Skip to main content
Log in

Stable Pt clusters anchored to monovacancies on graphene sheets

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

First principles simulations and global optimization predict new mode of binding of Pt clusters with defects on graphene that significantly enhances their stability. Pt clusters were found to firmly bind to monovacancies in configuration transacting the vacancy site, while retaining the integrity of the cluster. Diffusion calculations support tight anchoring of Pt cluster to monovacancy. Pt cluster adsorbed on pristine graphene or other common defects exhibit a different mode of adsorption and only decorate one side of graphene. This study reveals strong influence of defect chemistry on the structure and mobility of Pt nanoclusters adsorbed on graphene and have important implications for catalytic and gas sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Table I
Figure 3
Table II

Similar content being viewed by others

References

  1. V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, and K.S. Kim: Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112, 6156 (2012).

    Article  CAS  Google Scholar 

  2. A. Green, R. Isseroff, S. Lin, L. Wang, and M. Rafailovich: Synthesis and characterization of iron nanoparticles on partially reduced graphene oxide as a cost-effective catalyst for polymer electrolyte membrane fuel cells. MRS Commun. 7, 166 (2017).

    Article  CAS  Google Scholar 

  3. B. Cho, J. Yoon, M.G. Hahm, D.-H. Kim, A.R. Kim, Y.H. Kahng, S.-W. Park, Y.-J. Lee, S.-G. Park, J.-D. Kwon, C.S. Kim, M. Song, Y. Jeong, K.-S. Nam, and H.C. Ko: Graphene-based gas sensor: metal decoration effect and application to a flexible device. J. Mater. Chem. C 2, 5280 (2014).

    Article  CAS  Google Scholar 

  4. M. Ding, D.C. Sorescu, G.P. Kotchey, and A. Star: Welding of gold nanoparticles on graphitic templates for chemical sensing. J. Am. Chem. Soc. 134, 3472 (2012).

    Article  CAS  Google Scholar 

  5. M. Ding, Y. Tang, and A. Star: Understanding interfaces in metal-graphitic hybrid nanostructures. J. Phys. Chem. Lett. 4, 147 (2013).

    Article  CAS  Google Scholar 

  6. S.-Y. Wu and J.-J. Ho: Adsorption of a Pt13 cluster on graphene oxides at varied ratios of oxygen to carbon and its catalytic reactions for CO removal investigated with quantum-chemical calculations. J. Phys. Chem. C 118, 26764 (2014).

    Article  CAS  Google Scholar 

  7. I. Fampiou and A. Ramasubramaniam: Binding of Pt Nanoclusters to point defects in graphene: adsorption, morphology, and electronic structure. J. Phys. Chem. C 116, 6543 (2012).

    Article  CAS  Google Scholar 

  8. H. Padmanabhan and B.R.K. Nanda: Intertwined lattice deformation and magnetism in monovacancy graphene. Phys. Rev. B 93, 165403 (2016).

    Article  Google Scholar 

  9. C. Zhang, D.M. Dabbs, L.M. Liu, I.A. Aksay, R. Car, and A. Selloni: Combined effects of functional groups, lattice defects, and edges in the infrared spectra of graphene oxide. J. Phys. Chem. C 119, 18167 (2015).

    Article  CAS  Google Scholar 

  10. A.W. Robertson, G.-D. Lee, K. He, E. Yoon, A.I. Kirkland, and J.H. Warner: Stability and dynamics of the tetravacancy in graphene. Nano Lett. 14, 1634 (2014).

    Article  CAS  Google Scholar 

  11. T.P. Kaloni, N. Singh, and U. Schwingenschlögl: Prediction of a quantum anomalous Hall state in Co-decorated silicene. Phys. Rev. B 89, 035409 (2014).

    Article  Google Scholar 

  12. J.E. Padilha and R.B. Pontes: Electronic and transport properties of structural defects in monolayer germanene: an ab initio investigation. Solid State Commun. 225, 38 (2016).

    Article  CAS  Google Scholar 

  13. N. Singh, T.P. Kaloni, and U. Schwingenschlögl: A first-principles investigation of the optical spectra of oxidized graphene. Appl. Phys. Lett. 102, 023101 (2013).

    Article  Google Scholar 

  14. M.J. Piotrowski, P. Piquini, and J.L.F. Da Silva: Density functional theory investigation of 3d, 4d, and 5d 13-atom metal clusters. Phys. Rev. B 81, 155446 (2010).

    Article  Google Scholar 

  15. D.J. Wales and J.P.K. Doye: Global optimization by basin-hopping and the lowest energy structures of lennard-jones clusters containing up to 110 atoms. J. Phys. Chem. A 101, 5111 (1997).

    Article  CAS  Google Scholar 

  16. A. Fernando, K.L.D.M. Weerawardene, N.V. Karimova, and C.M. Aikens: Quantum mechanical studies of large metal, metal oxide, and metal chalcogenide nanoparticles and clusters. Chem. Rev. 115, 6112 (2015).

    Article  CAS  Google Scholar 

  17. B. Medasani, Y.H. Park, and I. Vasiliev: Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles. Phys. Rev. B 75, 235436 (2007).

    Article  Google Scholar 

  18. B. Medasani and I. Vasiliev: Computational study of the surface properties of aluminum nanoparticles. Surf. Sci. 603, 2042 (2009).

    Article  CAS  Google Scholar 

  19. G. Henkelman, B.P. Uberuaga, and H. Jónsson: A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901 (2000).

    Article  CAS  Google Scholar 

  20. Y.W. Koh and S. Manzhos: Curvature drastically changes diffusion properties of Li and Na on graphene. MRS Commun. 3, 171 (2013).

    Article  CAS  Google Scholar 

  21. G. Kresse and J. Hafner: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    Article  CAS  Google Scholar 

  22. J. Hutter, M. Iannuzzi, F. Schiffmann, and J. VandeVondele: CP2K: atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 15 (2014).

    Article  CAS  Google Scholar 

  23. S.R. Bahn and K.W. Jacobsen: An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng. 4, 56 (2002).

    Article  CAS  Google Scholar 

  24. R. Terrel, S. Chill, P. Xiao, J. Duncan, S. Stauffer, R. Bandy, and G. Henkelman: TSASE: Transition State Library for ASE. Retreived Sept 18, 2017 from http://theory.cm.utexas.edu/tsase/.

    Google Scholar 

  25. K. Momma and F. Izumi: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award KC020105-FWP12152. Simulations were performed using PNNL Institutional Computing Resources. Pacific Northwest National Laboratory (PNNL) is operated by Battelle for the Department of Energy under contract No. DE-AC05-76RLO1830. The authors thank Mauricio Piotrowski and Juarez da Silva for providing the lowest energy gaseous Pt13 structure and Iona Fampiou and Ashwin Ramasubramaniam for providing the annealed structures of Pt13 decorating pristine and defective graphene with monovacancy and 5-8-5 defects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria L. Sushko.

Supporting information to

Appendices

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2017.112

Conflict of Interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medasani, B.K., Liu, J. & Sushko, M.L. Stable Pt clusters anchored to monovacancies on graphene sheets. MRS Communications 7, 891–895 (2017). https://doi.org/10.1557/mrc.2017.112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.112

Navigation