Skip to main content
Log in

Effect of poly(dimethylsiloxane) binder in a silica-based superhydrophobic coating on mechanical properties, surface roughness, and wettability

  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

This work investigates the influence of poly(dimethylsiloxane) (PDMS) within a nanocomposite coating solution constituted by silica nanoparticles and toluene on mechanical properties, surface wettability, and surface morphology. The developed coating's hardness and elastic modulus were studied in detail. A variation in mechanical properties was observed as the amount of PDMS was varied. Also, the average surface roughness, skewness, and kurtosis values show the influence of the amount of PDMS on the surface roughness characteristics of the coating. Furthermore, it was observed that the water contact angles were linked with the proportion of PDMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. L. Xu, F. Liu, M. Liu, Z. Wang, Z. Qian, W. Ke, E. Han, G. Jie, J. Wang, and L. Zhu: Fabrication of repairable superhydrophobic surface and improved anticorrosion performance based on zinc-rich coating. Prog. Org. Coat. 137, 105335 (2019).

    Article  CAS  Google Scholar 

  2. C. Yao, D. Sebastian, I. Lian, Ö Günaydın-Şen, R. Clarke, K. Clayton, C. Chen, K. Kharel, Y. Chen, and Q. Li: Corrosion resistance and durability of superhydrophobic copper surface in corrosive NaCl aqueous solution. Coatings 8, 70 (2018).

    Article  Google Scholar 

  3. Z. Wang, Q. Li, Z. She, F. Chen, and L. Li: Low-cost and large-scale fabrication method for an environmentally-friendly superhydrophobic coating on magnesium alloy. J. Mater. Chem. 22, 4097 (2012).

    Article  CAS  Google Scholar 

  4. S. Jung, M. Dorrestijn, D. Raps, A. Das, C. Megaridis, and D. Poulikakos: Are superhydrophobic surfaces best for icephobicity? Langmuir 27, 3059–3066 (2011).

    Article  CAS  Google Scholar 

  5. X. Chen, Y. Chen, T. Jin, L. He, Y. Zeng, Q. Ma, and N. Li: Fabrication of superhydrophobic coating from non-fluorine siloxanes via a one-pot sol–gel method. J. Mater. Sci. 53, 11253–11264 (2018).

    Article  CAS  Google Scholar 

  6. J. Yu, L. Qin, Y. Hao, S. Kuang, X. Bai, Y. Chong, W. Zhang, and E. Wang: Vertically aligned boron nitride nanosheets: chemical vapor synthesis, ultraviolet light emission, and superhydrophobicity. ACS Nano 4, 414–422 (2010).

    Article  CAS  Google Scholar 

  7. H. Kahraman, I. Cevik, F. Dündar, and F. Ficici: The corrosion resistance behaviors of metallic bipolar plates for PEMFC coated with physical vapor deposition (PVD): an experimental study. Arabian J. Sci. Eng. 41, 1961–1968 (2016).

    Article  CAS  Google Scholar 

  8. D. Schaeffer, G. Polizos, D. Smith, D. Lee, S. Hunter, and P. Datskos: Optically transparent and environmentally durable superhydrophobic coating based on functionalized SiO2nanoparticles. Nanotechnology 26, 055602 (2015).

    Article  Google Scholar 

  9. Z. Zhang, B. Ge, X. Men, and Y. Li: Mechanically durable, superhydrophobic coatings prepared by dual-layer method for anti-corrosion and self-cleaning. Colloids Surf. A 490, 182–188 (2016).

    Article  CAS  Google Scholar 

  10. Y. Qing, C. Yang, C. Hu, Y. Zheng, and C. Liu: A facile method to prepare superhydrophobic fluorinated polysiloxane/ZnO nanocomposite coatings with corrosion resistance. Appl. Surf. Sci. 326, 48–54 (2015).

    Article  CAS  Google Scholar 

  11. D. Sebastian, C. Yao, and I. Lian: Abrasion resistance of superhydrophobic coatings on aluminum using PDMS/SiO2. Coatings 8, 414 (2018).

    Article  Google Scholar 

  12. T. Wong, H. Wang, F. Wang, S. Sin, C. Quan, S. Wang, and X. Zhou: Development of a highly transparent superamphiphobic plastic sheet by nanoparticle and chemical coating. J. Colloid Interface Sci. 467, 245–252 (2016).

    Article  CAS  Google Scholar 

  13. Z. Chen, L. Hao, A. Chen, Q. Song, and C. Chen: A rapid one-step process for fabrication of superhydrophobic surface by electrodeposition method. Electrochim. Acta 59, 168–171 (2012).

    Article  CAS  Google Scholar 

  14. Z. She, Q. Li, Z. Wang, L. Li, F. Chen, and J. Zhou: Novel method for controllable fabrication of a superhydrophobic CuO surface on AZ91D magnesium alloy. ACS Appl. Mater. Interfaces 4, 4348–4356 (2012).

    Article  CAS  Google Scholar 

  15. D. Sebastian, C. Yao, and I. Lian: Multiscale corrosion analysis of superhydrophobic coating on 2024 aluminum alloy in a 3.5 wt% NaCl solution. MRS Commun. 10, 305–311 (2020).

    Google Scholar 

  16. L. Xu, R. Karunakaran, J. Guo, and S. Yang: Transparent, superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles. ACS Appl. Mater. Interfaces 4, 1118–1125 (2012).

    Article  CAS  Google Scholar 

  17. C. Cao, M. Ge, J. Huang, S. Li, S. Deng, S. Zhang, Z. Chen, K. Zhang, S. Al-Deyab, and Y. Lai: Robust fluorine-free superhydrophobic PDMS–ormosil@fabrics for highly effective self-cleaning and efficient oil–water separation. J. Mater. Chem. A 4, 12179–12187 (2016).

    Article  CAS  Google Scholar 

  18. D. Sebastian, C. Yao, and I. Lian: Mechanical durability of engineered superhydrophobic surfaces for anti-corrosion. Coatings 8, 162 (2018).

    Article  Google Scholar 

  19. S. Gao, X. Dong, J. Huang, S. Li, Y. Li, Z. Chen, and Y. Lai: Rational construction of highly transparent superhydrophobic coatings based on a non-particle, fluorine-free and water-rich system for versatile oil-water separation. Chem. Eng. J. 333, 621–629 (2018).

    Article  CAS  Google Scholar 

  20. T. Kim, J. Kim, and O. Jeong: Measurement of nonlinear mechanical properties of PDMS elastomer. Microelectron. Eng. 88, 1982–1985 (2011).

    Article  CAS  Google Scholar 

  21. R. Palchesko, L. Zhang, Y. Sun, and A. Feinberg: Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve. PLoS ONE 7, e51499 (2012).

  22. K. Lei, K. Lee, and M. Lee: Development of a flexible PDMS capacitive pressure sensor for plantar pressure measurement. Microelectron. Eng. 99, 1–5 (2012).

    Article  CAS  Google Scholar 

  23. B. Bolvardi, J. Seyfi, I. Hejazi, M. Otadi, H. Khonakdar, and S. Davachi: Towards an efficient and durable superhydrophobic mesh coated by PDMS/TiO2 nanocomposites for oil/water separation. Appl. Surf. Sci. 492, 862–870 (2019).

    Article  CAS  Google Scholar 

  24. S. Amirpoor, R. Siavash Moakhar, and A. Dolati: A novel superhydrophilic/superoleophobic nanocomposite PDMS-NH2/PFONa-SiO2 coated-mesh for the highly efficient and durable separation of oil and water. Surf. Coat. Technol. 394, 125859 (2020).

    Article  CAS  Google Scholar 

  25. M.K. Srinath and M.S. Ganesha Prasad: Surface morphology and hardness analysis of TiCN coated AA7075 aluminium alloy. J. Inst. Eng. (India): Series C 100, 221–228 (2019).

    Google Scholar 

  26. Z. Wang, A.A. Volinsky, and N.D. Gallant: Nanoindentation study of polydimethylsiloxane elastic modulus using Berkovich and flat punch tips. J. Appl. Polym. Sci. 132, 1–7 (2015).

    CAS  Google Scholar 

  27. T. Young, J. Jackson, S. Roy, H. Ceylan, and S. Sundararajan: Tribological behavior and wettability of spray-coated superhydrophobic coatings on aluminum. Wear, 376–377 (2017).

    Google Scholar 

  28. X. Zhang, J. Mo, Y. Si, and Z. Guo: How does substrate roughness affect the service life of a superhydrophobic coating? Appl. Surf. Sci. 441, 491–499 (2018).

    Article  CAS  Google Scholar 

  29. A. Khaskhoussi, L. Calabrese, and E. Proverbio: Superhydrophobic self-assembled silane monolayers on hierarchical 6082 aluminum alloy for anti-corrosion applications. Appl. Sci. 10, 2656 (2020).

  30. S. Sutha, R. Kumar, B. Raj, and K. Ravi: Ultrasonic-assisted fabrication of superhydrophobic ZnO nanowall films. Bull. Mater. Sci. 40, 505–511 (2017).

    Article  CAS  Google Scholar 

  31. S. Naderizadeh, S. Dante, P. Picone, M. Di Carlo, R. Carzino, A. Athanassiou, and I. Bayer: Bioresin-based superhydrophobic coatings with reduced bacterial adhesion. J. Colloid Interface Sci. 574, 20–32 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Center for Midstream Management and Science (CMMS) of Lamar University. The authors appreciate the Center for Innovation, Commercialization and Entrepreneurship (CICE) at Lamar University for providing lab space.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Wei Yao.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2020.59.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebastian, D., Yao, CW. Effect of poly(dimethylsiloxane) binder in a silica-based superhydrophobic coating on mechanical properties, surface roughness, and wettability. MRS Communications 10, 512–518 (2020). https://doi.org/10.1557/mrc.2020.59

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2020.59

Navigation