Skip to main content
Log in

Imaging transient solidification behavior

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Solidification processing offers the first opportunity to control microstructure, properties, and performance in metallic alloy components. Until recently, microstructural evaluations were limited to post-solidification characterization by destructive methods. We review the development of time-resolved, in situ imaging techniques capable of capturing solid–liquid interfacial evolution in metallic alloys with high spatial and temporal resolution under diverse solidification conditions relevant for applications ranging from conventional directional solidification, crystal growth, and casting, to welding and additive manufacturing. These experiments enable direct visualization of transient behaviors that would otherwise remain unknown, uniquely providing insights into the physics that impact microstructure and defect development, and strategies for microstructural control and defect mitigation. Understanding microstructural evolution and the characteristics that form under various solidification conditions is essential for the development of multiscale, experimentally informed predictive modeling. This is highlighted by solidification simulations that utilize in situ measurements of solidification dynamics from state-of-the-art experimental techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  1. J.C. Fisher, J.H. Hollomon, D. Turnbull, J. Appl. Phys. 19, 775 (1948).

    Article  CAS  Google Scholar 

  2. D. Turnbull, J.C. Fisher, J. Chem. Phys. 17, 71 (1949).

    Article  CAS  Google Scholar 

  3. J.C. Fisher, J.H. Hollomon, D. Turnbull, Science 109, 168 (1949).

    Article  CAS  Google Scholar 

  4. D. Turnbull, J. Appl. Phys. 20, 817 (1949).

    Article  CAS  Google Scholar 

  5. D. Turnbull, J. Chem. Phys. 18, 198 (1950).

    Article  CAS  Google Scholar 

  6. D. Turnbull, J. Chem. Phys. 18, 769 (1950).

    Article  CAS  Google Scholar 

  7. D. Turnbull, J. Appl. Phys. 21, 1022 (1950).

    Article  CAS  Google Scholar 

  8. J.H. Hollomon, D. Turnbull, JOM 111, 803 (1951).

    Article  Google Scholar 

  9. D. Turnbull, J. Chem. Phys. 20, 411 (1952).

    Article  CAS  Google Scholar 

  10. D. Turnbull, Acta Metall. 1, 8 (1953).

    Article  CAS  Google Scholar 

  11. W.A. Tiller, K.A. Jackson, J.W. Rutter, B. Chalmers, Acta Metall. 1, 428 (1953).

    Article  CAS  Google Scholar 

  12. A. Greenfield, T.E. Graedel, Resour. Conserv. Recy. 74, 1 (2013).

    Article  Google Scholar 

  13. T.E. Graedel, E.M. Harper, N.T. Nassar, B.K. Reck, Proc. Natl. Acad. Sci. U.S.A. 112, 6295 (2015).

    Article  CAS  Google Scholar 

  14. J. Mi, in Solidification Processing of Metallic Alloys Under External Fields, D. Eskin, J. Mi, Eds., Springer Series in Materials Science (Springer, Cham, Switzerland, 2018) pp. 19–74.

  15. W. Kurz, D.J. Fisher, Fundamentals of Solidification (Trans Tech Publications, Aedermannsdorf, Switzerland, 1992).

    Google Scholar 

  16. J.A. Dantzig, M. Rappaz, Solidification (EPFL Press, Lausanne, Switzerland, 2009).

    Book  Google Scholar 

  17. A.J. Clarke, D. Tourret, S.D. Imhoff, P.J. Gibbs, K. Fezzaa, J.C. Cooley, W.-K. Lee, A. Deriy, B.M. Patterson, P.A. Papin, K.D. Clarke, R.D. Field, J.L. Smith, Adv. Eng. Mater. 17, 454 (2015).

    Article  CAS  Google Scholar 

  18. D. Tourret, A. Karma, Acta Mater. 82, 64 (2015).

    Article  CAS  Google Scholar 

  19. K.A. Jackson, J.D. Hunt, Acta Metall. 13, 1212 (1965).

    Article  CAS  Google Scholar 

  20. M.E. Glicksman, R.J. Schaefer, J. Ayers, Metall. Mater. Trans. A 7, 1747 (1976).

    Article  Google Scholar 

  21. S.C. Huang, M.E. Glicksman, Acta Metall. 29, 701 (1981).

    Article  CAS  Google Scholar 

  22. S.C. Huang, M.E. Glicksman, Acta Metall. 29, (1981).

  23. K. Somboonsuk, R. Trivedi, Acta Metall. 33, 1051 (1985).

    Article  CAS  Google Scholar 

  24. R. Trivedi, K. Somboonsuk, Acta Metall. 33, 1061 (1985).

    Article  CAS  Google Scholar 

  25. W. Losert, B.Q. Shi, H.Z. Cummins, J.A. Warren, Phys. Rev. Lett. 77, 889 (1996).

    Article  CAS  Google Scholar 

  26. W. Losert, B.Q. Shi, H.Z. Cummins, Proc. Natl. Acad. Sci. U.S.A. 95, 431 (1998).

    Article  CAS  Google Scholar 

  27. R. Trivedi, S.A. David, M.A. Eshelman, J.M. Vitek, S.S. Babu, T. Hong, T. DebRoy, J. Appl. Phys. 93, 4885 (2003).

    Article  CAS  Google Scholar 

  28. R.H. Mathiesen, L. Arnberg, F. Mo, T. Weitkanp, A. Snigirev, Phys. Rev. Lett. 83, 5062 (1999).

    Article  CAS  Google Scholar 

  29. H. Nguyen-Thi, L. Salvo, R.H. Mathiesen, L. Arnberg, B. Billia, M. Suery, G. Reinhart, C. R. Phys. 13, 237 (2012).

    Article  CAS  Google Scholar 

  30. J. Baruchel, M. Di Michiel, T. Lafford, P. Lhuissier, J. Meyssonnier, H. Nguyen-Thi, A. Philip, P. Pernot, L. Salvo, M. Scheel, C. R. Phys. 14, 208 (2013).

    Article  CAS  Google Scholar 

  31. R.H. Mathiesen, L. Arnberg, K. Ramsoskar, T. Weitkamp, C. Rau, A. Snigirev, Metall. Mater. Trans. B 33, 613 (2002).

    Article  Google Scholar 

  32. H. Nguyen-Thi, H. Jamgotchian, J. Gastaldi, J. Härtwig, T. Schenk, H. Klein, B. Billia, J. Baruchel, Y. Dabo, J. Phys. D Appl. Phys. 36, A83 (2003).

    Article  Google Scholar 

  33. H. Yasuda, I. Ohnaka, K. Kawasaki, A. Sugiyama, T. Ohmichi, J. Iwane, K. Umetani, J. Cryst. Growth 262, 645 (2004).

    Article  CAS  Google Scholar 

  34. R.H. Mathiesen, L. Arnberg, Acta Mater. 53, 947 (2005).

    Article  CAS  Google Scholar 

  35. G. Grange, J. Gastaldi, C. Jourdan, B. Billia, J. Cryst. Growth 151, 192 (1995).

    Article  CAS  Google Scholar 

  36. G. Grange, C. Jourdan, J. Gastaldi, B. Billia, Acta Mater. 45, 2329 (1997).

    Article  CAS  Google Scholar 

  37. G. Reinhart, A. Buffet, H. Nguyen-Thi, B. Billia, H. Jung, N. Mangelinck-Noel, N. Bergeon, T. Schenk, J. Hartwig, J. Baruchel, Metall. Mater. Trans. A 39, 865 (2008).

    Article  CAS  Google Scholar 

  38. E. Maire, J.Y. Buffiere, L. Salvo, J.J. Blandin, W. Ludwig, J.M. Letang, Adv. Eng. Mater. 3, 539 (2001).

    Article  CAS  Google Scholar 

  39. L. Salvo, M. Suery, A. Marmottant, N. Limodin, D. Bernard, C. R. Phys. 11, 641 (2010).

    Article  CAS  Google Scholar 

  40. E. Maire, P.J. Withers, Int. Mater. Rev. 59, 1 (2014).

    Article  CAS  Google Scholar 

  41. J.W. Gibbs, K.A. Mohan, E.B. Gulsoy, A.J. Shahani, X. Xiao, C.A. Bouman, M. De Graef, P.W. Voorhees, Sci. Rep. 5, 11824 (2015).

    Article  CAS  Google Scholar 

  42. C. Rackete, C. Baumbach, A. Goldschmidt, D. Samberg, C.G. Schroer, F. Breede, C. Stenzel, G. Zimmermann, C. Pickmann, Y. Houltz, C. Lockowandt, O. Svenonius, P. Wiklund, R.H. Mathiesen, Rev. Sci. Instrum. 82, 105108 (2011).

    Article  CAS  Google Scholar 

  43. A.J. Clarke, Phys. Cond. Matter News (2014), https://phys.org/news/2014-04-probing-metal-solidification-nondestructively.html.

    Google Scholar 

  44. A. Gavron, C.L. Morris, H.J. Ziock, J.D. Zumbro, Proton Radiography (Los Alamos National Laboratory Report LA-UR-96-420, Los Alamos, NM, 1996).

    Google Scholar 

  45. C.L. Morris, E.N. Brown, A. Agee, T. Bernert, M.A.M. Bourke, M.W. Burkett, W.T. Butler, D.D. Byler, C.F. Chen, A.J. Clarke, J.C. Cooley, P.J. Gibbs, S.D. Imhoff, R. Jones, K. Kwiatowski, F.G. Mariam, F.E. Merrill, M.M. Murray, C.T. Olinger, D.M. Oro, P. Nedrow, A. Saunders, G. Terrones, F. Trouw, D. Tupa, W. Vogan, B. Winkler, Z. Wang, M.B. Zellner, Exp. Mech. 56, 111 (2016).

    Article  CAS  Google Scholar 

  46. A. Clarke, S.D. Imhoff, J. Cooley, C. Morris, F. Merrill, B. Hollander, F. Mariam, T. Ott, M. Barker, T. Tucker, W.-K. Lee, K. Fezzaa, A. Deriy, B. Patterson, K. Clarke, J. Montalvo, R. Field, D. Thoma, J. Smith, D. Teter, Sci. Rep. 3, 2020 (2013).

    Article  Google Scholar 

  47. F.E. Merrill, J. Goett, J.W. Gibbs, S.D. Imhoff, F.G. Mariam, C.L. Morris, L.P. Neukirch, J. Perry, D. Poulson, R. Simpson, P.L. Volegov, P.L. Walstrom, C.H. Wilde, C. Hast, K. Jobe, T. Smith, U. Wienands, A.J. Clarke, D. Tourret, Appl. Phys. Lett. 112, 144103 (2018).

    Article  CAS  Google Scholar 

  48. A.J. Clarke, D. Tourret, Y. Song, S.D. Imhoff, P.J. Gibbs, J.W. Gibbs, K. Fezzaa, A. Karma, Acta Mater. 129, 203 (2017).

    Article  CAS  Google Scholar 

  49. J.W. Gibbs, D. Tourret, P.J. Gibbs, S.D. Imhoff, M.J. Gibbs, B.A. Walker, K. Fezzaa, A.J. Clarke, JOM 68, 170 (2016).

    Article  CAS  Google Scholar 

  50. D. Tourret, A. Karma, A.J. Clarke, P.J. Gibbs, S.D. Imhoff, IOP Conf. Ser. Mater. Sci. Eng. 84, 012082 (2015).

    Article  CAS  Google Scholar 

  51. D. Tourret, A.J. Clarke, S.D. Imhoff, P.J. Gibbs, J.W. Gibbs, A. Karma, JOM 67, 1776 (2015).

    Article  CAS  Google Scholar 

  52. R.R. DeHoff, M.M. Kirka, W.J. Sames, H. Bilheux, A.S. Tremsin, L.E. Lowe, S.S. Babu, Mater. Sci. Technol. (2015).

    Google Scholar 

  53. C. Zhao, K. Fezzaa, R.W. Cunningham, H. Wen, D. De Carlo, L. Chen, A.D. Rollett, T. Sun, Sci. Rep. 7, 3602 (2017).

    Article  CAS  Google Scholar 

  54. T.M. Pollock, A.J. Clarke, S.S. Babu, Metall. Mater. Trans. A 51 (2020), https://doi.org/10.1007/s11661-020-06009-3.

  55. A.A. Martin, N.P. Calta, J.A. Hammons, S.A. Khairallah, M.H. Nielsen, R.M. Shuttlesworth, N. Sinclair, M.J. Matthews, J.R. Jeffries, T.M. Willey, J.R.I. Lee, Mater. Today Adv. 1, 100002 (2019).

    Article  Google Scholar 

  56. A.A. Martin, N.P. Calta, S.A. Khairallah, J. Wang, P.J. Depond, A.Y. Fong, V. Thampy, G.M. Guss, A.M. Kiss, K.H. Stone, C.J. Tassone, J.N. Weker, M.F. Toney, T. van Buuren, M.J. Matthews, Nat. Commun. 10, 1987 (2019).

    Article  CAS  Google Scholar 

  57. S.A. Khairallah, A.A. Martin, J.R.I. Lee, G. Guss, N.P. Calta, J.A. Hammons, M.H. Nielsen, K. Chaput, E. Schwalbach, M.N. Shah, M.G. Chapman, T.M. Willey, A.M. Rubenchik, A.T. Anderson, Y.M. Wang, M.J. Matthews, W.E. King, Science 368, 660 (2020).

    Article  CAS  Google Scholar 

  58. G.H. Campbell, J.T. McKeown, M.K. Santala, Appl. Phys. Rev. 1, 041101 (2014).

    Article  CAS  Google Scholar 

  59. T. LaGrange, B.W. Reed, D.J. Masiel, MRS Bull. 40, 22 (2015).

    Article  CAS  Google Scholar 

  60. G.H. Campbell, J.T. McKeown, M.K. Santala, in Springer Handbook of Microscopy, P.W. Hawkes, J.C.H. Spence, Eds. (Springer, Cham, Switzerland, 2019) pp. 455–486.

  61. W.E. King, G.H. Campbell, A. Frank, B. Reed, J.F. Schmerge, B.J. Siwick, B.C. Stuart, P.M. Weber, J. Appl. Phys. 97, 111101 (2005).

    Article  CAS  Google Scholar 

  62. T. LaGrange, M.R. Armstrong, K. Boyden, C.G. Brown, G.H. Campbell, J.D. Colvin, W.J. DeHope, A.M. Frank, D.J. Gibson, F.V. Hartemann, J.S. Kim, W.E. King, B.J. Pyke, B.W. Reed, M.D. Shirk, R.M. Shuttlesworth, B.C. Stuart, B.R. Torralva, N.D. Browning, Appl. Phys. Lett. 89, 044105 (2006).

    Article  CAS  Google Scholar 

  63. M.R. Armstrong, K. Boyden, N.D. Browning, G.H. Campbell, J.D. Colvin, W.J. DeHope, A.M. Frank, D.J. Gibson, F. Hartemann, J.S. Kim, W.E. King, T.B. LaGrange, B.J. Pyke, B.W. Reed, R.M. Shuttlesworth, B.C. Stuart, B.R. Torralva, Ultramicroscopy 107, 356 (2007).

    Article  CAS  Google Scholar 

  64. M.R. Armstrong, B.W. Reed, B.R. Torralva, N.D. Browning, Appl. Phys. Lett. 90, 114101 (2007).

    Article  CAS  Google Scholar 

  65. J.S. Kim, T. LaGrange, B.W. Reed, M.L. Taheri, M.R. Armstrong, W.E. King, N.D. Browning, G.H. Campbell, Science 321, 1472 (2008).

    Article  CAS  Google Scholar 

  66. T. LaGrange, G.H. Campbell, B. Reed, M. Taheri, J.B. Pesavento, J.S. Kim, N.D. Browning, Ultramicroscopy 108, 1441 (2008).

    Article  CAS  Google Scholar 

  67. B. Reed, M.R. Armstrong, N.D. Browning, G.H. Campbell, J.E. Evans, T. LaGrange, D.J. Masiel, Microsc. Microanal. 15, 272 (2009).

    Article  CAS  Google Scholar 

  68. B.W. Reed, T. LaGrange, R.M. Shuttlesworth, D.J. Gibson, G.H. Campbell, N.D. Browning, Rev. Sci. Instrum. 81, 053706 (2010).

    Article  CAS  Google Scholar 

  69. T. LaGrange, B.W. Reed, M.K. Santala, J.T. McKeown, A. Kulovits, J.M.K. Wiezorek, L. Nikolova, F. Rosei, B.J. Siwick, G.H. Campbell, Micron 43, 1108 (2012).

    Article  CAS  Google Scholar 

  70. A. Kulovits, J.M.K. Wiezorek, T. LaGrange, B.W. Reed, G.H. Campbell, Philos. Mag. Lett. 91, 287 (2011).

    Article  CAS  Google Scholar 

  71. J.T. McKeown, A. Kulovits, C. Liu, K. Zweiacker, B.W. Reed, T. LaGrange, J.M.K. Wiezorek, G.H. Campbell, Acta Mater. 65, 56 (2014).

    Article  CAS  Google Scholar 

  72. W.J. Boettinger, D. Shechtman, R.J. Schaefer, F.S. Biancaniello, Metall. Trans. A 15A, 55 (1984).

    Article  CAS  Google Scholar 

  73. W. Kurz, R. Trivedi, Acta Metall. Mater. 38, 1 (1990).

    Article  CAS  Google Scholar 

  74. M. Gremaud, M. Carrard, W. Kurz, Acta Metall. Mater. 39, 1431 (1991).

    Article  CAS  Google Scholar 

  75. M. Zimmermann, M. Carrard, M. Gremaud, W. Kurz, Mater. Sci. Eng. A 134, 1278 (1991).

    Article  Google Scholar 

  76. M. Carrard, M. Gremaud, M. Zimmermann, W. Kurz, Acta Metall. Mater. 40 983 (1992).

    Article  CAS  Google Scholar 

  77. W.W. Mullins, R.F. Sekerka, J. Appl. Phys. 35, 444 (1964).

    Article  Google Scholar 

  78. S.R. Coriell, R.F. Sekerka, J. Cryst. Growth 61, 499 (1983).

    Article  CAS  Google Scholar 

  79. J.T. McKeown, K. Zweiacker, C. Liu, D.R. Coughlin, A.J. Clarke, J.K. Baldwin, J.W. Gibbs, J.D. Roehling, S.D. Imhoff, P.J. Gibbs, D. Tourret, J.M.K. Wiezorek, G.H. Campbell, JOM 68, 985 (2016).

    Article  CAS  Google Scholar 

  80. K. Zweiacker, J.T. McKeown, C. Liu, T. LaGrange, B.W. Reed, G.H. Campbell, J.M.K. Wiezorek, J. Appl. Phys. 120, 055106 (2016).

    Article  CAS  Google Scholar 

  81. J.D. Roehling, D.R. Coughlin, J.W. Gibbs, J.K. Baldwin, J.C.E. Mertens, G.H. Campbell, A.J. Clarke, J.T. McKeown, Acta Mater. 131, 22 (2017).

    Article  CAS  Google Scholar 

  82. A. Perron, J.D. Roehling, P.E.A. Turchi, J.-L. Fattebert, J.T. McKeown, Model. Simul. Mater. Sci. Eng. 26, 014002 (2018).

    Article  Google Scholar 

  83. K. Zweiacker, C. Liu, M.A. Gordillo, J.T. McKeown, G.H. Campbell, J.M.K. Wiezorek, Acta Mater. 145, 71 (2018).

    Article  CAS  Google Scholar 

  84. V. Bathula, C. Liu, K. Zweiacker, J.T. McKeown, J.M.K. Wiezorek, Acta Mater. 195, 341 (2020).

    Article  CAS  Google Scholar 

  85. T. Pinomaa, J.T. McKeown, J.M.K. Wiezorek, N. Provatas, A. Laukkanen, T. Suhonen, J. Cryst. Growth 532, 125418 (2020).

    Article  CAS  Google Scholar 

  86. M.D. Grapes, T. LaGrange, K. Woll, B.W. Reed, G.H. Campbell, D.A. LaVan, T.P. Weihs, APL Mater. 2, 116102 (2014).

    Article  CAS  Google Scholar 

  87. M.D. Grapes, T. LaGrange, L.H. Friedman, B.W. Reed, G.H. Campbell, T.P. Weihs, D.A. LaVan, Rev. Sci. Instrum. 85, 084902 (2014).

    Article  CAS  Google Scholar 

  88. S.C. Gill, W. Kurz, Acta Metall. Mater. 41, 3563 (1993).

    Article  CAS  Google Scholar 

  89. S.C. Gill, W. Kurz, Acta Metall. Mater. 43, 139 (1995).

    CAS  Google Scholar 

  90. A.J. Clarke, D. Tourret, S.D. Imhoff, J.W. Gibbs, Y. Song, A. Karma, K. Fezzaa, pRad Team, N.N. Carlson, P.J. Gibbs, D.R. Coughlin, J.D. Roehling, J.T. McKeown, J.K. Baldwin, in Frontiers in Solidification: Symposium in Honour of Michel Rappaz, W. Kurz, J.A. Dantzig, A. Karma, J. Hoyt, Eds., (EPFL Materials Science, Lausanne, Switzerland, 2016) pp. 77–82.

Download references

Acknowledgments

Lawrence Livermore National Laboratory (LLNL) is operated by Lawrence Livermore National Security, LLC, for the US Department of Energy, National Nuclear Security Administration (NNSA) under Contract No. DE-AC52-07NA27344. Work at LLNL was supported by the Laboratory Directed Research and Development (LDRD) Program under project tracking code 18-SI-003. Preparation of this manuscript at the Colorado School of Mines (Mines) was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) under Award No. DE-SC0020870. Synchrotron x-ray imaging of solidification and pRad imaging of metal casting were supported by the US DOE Office of Science, BES, under Award No. DE-SC001606 and A.J.C.’s Early Career Research Program Award. A.J.C. acknowledges the support of the US Department of the Navy, Office of Naval Research under ONR Award No. N00014-18-1-2794 for selected simulated AM experiments. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Office of Naval Research. This research used resources of the Advanced Photon Source, a US DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. pRad was performed at the Los Alamos Neutron Science Center (LANSCE), a NNSA User Facility operated for the US DOE by Los Alamos National Laboratory (LANL) (Contract No. 89233218CNA000001). The research activities at the University of Pittsburgh received support from the National Science Foundation, Division of Materials Research, Metals, and Metallic Nanostructures program through Grant No. DMR 1607922.

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

Author information

Authors and Affiliations

Authors

Appendix

Appendix

Joseph T. McKeown leads the Metallurgy and Advanced Microscopy Group in the Materials Science Division at Lawrence Livermore National Laboratory (LLNL). He earned his PhD degree in materials science and engineering from the University of California, Berkeley. He completed a postdoctoral fellowship in the Department of Physics at Arizona State University. His research includes in situ studies of phase transformations using dynamic transmission electron microscopy. His research focuses on transmission electron microscopy, alloy design, and process–structure–property–performance relationships in metals and alloys. McKeown can be reached by email at mckeown3@llnl.gov.

Amy J. Clarke is an associate professor in the George S. Ansell Department of Metallurgical and Materials Engineering at the Colorado School of Mines. She received her BS degree from Michigan Technological University, and MS and PhD degrees in metallurgical and materials engineering from the Colorado School of Mines. Her research focuses on physical metallurgy, and making, measuring, and modeling metallic alloys during processing to realize advanced manufacturing. Her awards include a Presidential Early Career Award for Scientists and Engineers. She served on the Board of Directors for The Minerals, Metals & Materials Society and the Association for Iron and Steel Technology, and is a Fellow of ASM International. Clarke can be reached by email at amyclarke@mines.edu.

Jörg M.K. Wiezorek is a professor of mechanical engineering and materials science at the University of Pittsburgh. He received his PhD degree in materials science and metallurgy from the University of Cambridge, UK, and BS and MS degrees in physics from the University of Münster, Germany. His research focuses on processing–microstructure–property–performance relationships primarily in metallic materials using advanced microcharacterization methods. His awards include the National Science Foundation CAREER Award, the Microanalysis Society Birks Award, and the William Kepler Whiteford Faculty Fellowship. He has held visiting positions at Lawrence Berkeley National Laboratory, Westinghouse Electric Corporation, and the ETH Zürich. Wiezorek can be reached by email at wiezorek@pitt.edu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McKeown, J.T., Clarke, A.J. & Wiezorek, J.M. Imaging transient solidification behavior. MRS Bulletin 45, 916–926 (2020). https://doi.org/10.1557/mrs.2020.273

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.273

Navigation