Skip to main content
Log in

Self-Assembled Nano-Needles of Polyaniline, Efficient Structures in Controlling Electrical Conductivity

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Polyaniline (PANI) is one of the most interesting conducting polymers with a wide and controllable conductivity range, synthesized easily via chemical or electrical route, stable chemically and environmentally, having high absorption in the visible range and high mobility of charge carriers. Under different conditions, PANI morphology can be controlled yielding to the creation of nano-tubes, belts, rods, fibers and particles.

In this study, the chemical oxidative polymerization which consists of mixing aniline hydrochloride (A-HCl) with ammonium peroxydisulfate (APS) was used to synthesize HCl doped PANI. Fixing the weight ratio A-HCl/APS defined by the IUPAC while varying their quantities leads to the formation of PANI nanoparticles with variable diameters. In addition, PANI nano-needles of 60 nm average diameter at the center are also obtained. Different methods are used to investigate of 1-D morphologies. The electrical conductivity of bulk PANI pellets is measured using the four-point probe technique. The absorption in the visible range of PANI particles and nano-needles is determined by UV-Vis spectroscopy. XRD analysis was performed to study the effect of PANI particle size and morphology on the crystallinity of the powder. Such structures could be used in hybrid solar cells for higher conversion efficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Roe, J. Ginder, P. Wigen, A. Epstein, M. Angelopoulos and A. MacDiarmid, Phys. Rev. Lett. 60, 2789 (1988).

    Article  CAS  Google Scholar 

  2. K. Ryu, K. Kim, N. Park, Y. Park and S. Chang, J Power Sources 103, 305 (2002).

    Article  CAS  Google Scholar 

  3. A. Kukla, Y. Shirshov and S. Piletsky, Sens Actuators B Chem 37, 135 (1996).

    Article  CAS  Google Scholar 

  4. Z. Liu, J. Zhou, H. Xue, L. Shen, H. Zang and W. Chen, Synth Met 156, 721 (2006).

    Article  CAS  Google Scholar 

  5. A. Mirmohseni and A. Oladegaragoze, Synth Met 114, 105 (2000).

    Article  CAS  Google Scholar 

  6. S. Shukla, A. Bharadvaja, A. Tiwari, S. Pilla, G. Parashar and G. Dubey, Adv Mat Lett 1, 129 (2010).

    Article  CAS  Google Scholar 

  7. Y. Wang and X. Jing, J Phys Chem B 112, 1157 (2008).

    Article  CAS  Google Scholar 

  8. Z. Li, F. Blum, M. Bertino, C. Kim and S. Pillalamarri, Sens Actuators B Chem 134, 31 (2008).

    Article  CAS  Google Scholar 

  9. G. Rimbu, I. Stamatin, C. Jackson and K. Scott, J Optoelectronics Advanced Materials 8, 670 (2006).

    CAS  Google Scholar 

  10. S. Roy, K. Kargupta, S. Chakraborty and S. Ganguly, Mater Lett 61, 2535 (2008).

    Article  Google Scholar 

  11. X. Wang, M. Shao, G. Shao, Z. Wu and S. Wang, J Colloid Interface Sci 332, 74 (2009).

    Article  CAS  Google Scholar 

  12. W. Jung, D. Kim, Y. Lee and S. McCarthy, Mater Res Soc Symp Proc 949 C07–05, 2007.

    Google Scholar 

  13. W. Jung, Y. Lee and S. McCarthy, J Vinyl Addit Technol 13, 76 (2007).

    Article  CAS  Google Scholar 

  14. J. Stejskal and R. G. Gilbert, Pure Appl Chem 74, 857 (2002).

    Article  CAS  Google Scholar 

  15. J. Pouget, M. Jozefowicz, A. Epstein, X. Tang, and A. MacDiarmid, Macromolecules 24, 779 (1991).

    Article  CAS  Google Scholar 

  16. J. Li, X. Tang, H. Li, Y. Yan and Q. Zhang, Synth Met 160, 1153 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ibrahim Michael.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michael, I.I., Maria, J.B., Umit, B.D. et al. Self-Assembled Nano-Needles of Polyaniline, Efficient Structures in Controlling Electrical Conductivity. MRS Online Proceedings Library 1312, 701 (2011). https://doi.org/10.1557/opl.2011.113

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2011.113

Navigation