Skip to main content
Log in

Perspective on emerging views on microscopic origin of relaxor behavior

  • Invited Feature Paper - Review
  • Lead-Free Ferroelectric Materials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Relaxors are complex oxide ferroelectrics that are of interest because of their attractive dielectric and electromechanical properties. A broad frequency-dependent dielectric permittivity peak is usually considered as a characteristic feature of relaxors. In spite of decades long research, a microscopic model of relaxors has not been conclusively established. In recent years, this field has experienced renewed interest driven by mainly two factors: (a) discovery of new Pb-free relaxors in response to toxicity concerns about Pb-based materials in electronics and (b) advancements in experimental and theoretical techniques that provided new microscopic insights. The objectives of the current review are the following. First, we will provide a description of some important Pb-free relaxors with particular reference to their dielectric properties. Second, we will review the classical microscopic models of relaxors and discuss how these models have evolved over the last decade. The opportunities in this regard provided by the emergence of new Pb-free relaxors will be highlighted.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. L.E. Cross, Relaxor ferroelectrics. Ferroelectrics 76(1), 241–267 (1987)

    CAS  Google Scholar 

  2. G.A. Smolenskii et al., Ferroelectrics with diffuse phase transitions. Soviet Physics Solid State 2, 2584–2594 (1961)

    Google Scholar 

  3. A.A. Bokov, Z.G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41(1), 31–52 (2006)

    CAS  Google Scholar 

  4. W. Kleemann, Random fields in relaxor ferroelectrics—a jubilee review. J. Adv. Dielectr. 02(02), 1241001 (2012)

    Google Scholar 

  5. G.A. Samara, The relaxational properties of compositionally disordered ABO3 perovskites. J. Phys. Condens. Matter 15, R367–R411 (2003)

    CAS  Google Scholar 

  6. Z. Kutnjak, J. Petzelt, R. Blinc, The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature 441(7096), 956–959 (2006)

    CAS  Google Scholar 

  7. K. Uchino, Piezoelectric Actuators and Ultrasonic Motors (Kluwer Academic, Boston, 1996)

    Google Scholar 

  8. M. Valant, Electrocaloric materials for future solid-state refrigeration technologies. Prog. Mater Sci. 57(6), 980–1009 (2012)

    CAS  Google Scholar 

  9. G. Xu et al., Phase instability induced by polar nanoregions in a relaxor ferroelectric system. Nat. Mater. 7(7), 562–566 (2008)

    CAS  Google Scholar 

  10. S.P. Alpay et al., Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal energy interconversion. MRS Bull. 39(12), 1099–1111 (2014)

    CAS  Google Scholar 

  11. G. Burns, F.H. Dacol, Glassy polarization behavior in ferroelectric compounds Pb(Mg1/3Nb2/3)O3 and Pb(Zn1/3Nb2/3)O3. Sol. State Comm. 48(10), 853–856 (1983)

    CAS  Google Scholar 

  12. D. Viehland et al., Deviation from Curie-Weiss behavior in relaxor ferroelectrics. Phys. Rev. B 46(13), 8003–8006 (1992)

    CAS  Google Scholar 

  13. D. Viehland et al., Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J. Appl. Phys. 68(6), 2916–2921 (1990)

    CAS  Google Scholar 

  14. V. Westphal, W. Kleemann, M.D. Glinchuk, Diffuse phase transitions and random-field-induced domain states of the “relaxor” ferroelectric PbMg1/3Nb2/3O3. Phys. Rev. Lett. 68(6), 847–850 (1992)

    CAS  Google Scholar 

  15. M.D. Glinchuk, R. Farhi, A random field theory based model for ferroelectric relaxors. J. Phys. Cond. Matter 8, 6985–6996 (1996)

    CAS  Google Scholar 

  16. E. Husson, M. Chubb, A. Morell, Mater. Res. Bull. 23, 357–361 (1988)

    CAS  Google Scholar 

  17. N. de Mathan et al., A structural model for the relaxor Pb(Mg1/3Nb2/3)O3 at 5 K. J. Phys. Cond. Matter. 3, 8159–8171 (1991)

    Google Scholar 

  18. P.K. Davies, Cation ordering in complex oxides. Curr. Opin. Solid State Mater. Sci. 4, 467–471 (1999)

    Google Scholar 

  19. P.K. Davies, Chemical order in PMN-related relaxors: structure, stability, modification, and impact on properties. J. Phys. Chem. Solids 61, 159–166 (2000)

    CAS  Google Scholar 

  20. W. Dmowski, M.K. Akbas, T. Egami, P.K. Davies, Structure refinement of large domain relaxors in the Pb(Mg1/3Ta2/3)O3-PbZrO3 system. J. Phys. Chem. Solids 63, 15–22 (2002)

    CAS  Google Scholar 

  21. R. Pirc, R. Blinc, Spherical random-bond-random-field model of relaxor ferroelectrics. Phys. Rev. B 60, 13470–13478 (1999)

    CAS  Google Scholar 

  22. R. Pirc et al., Spherical model of relaxor polymers. Phys. Rev. B 72(1), 014202 (2005)

    Google Scholar 

  23. R.A. Cowley et al., Relaxing with relaxors: a review of relaxor ferroelectrics. Adv. Phys. 60(2), 229–327 (2011)

    CAS  Google Scholar 

  24. D. Fu et al., Relaxor Pb(Mg(1/3)Nb(2/3))O3: a ferroelectric with multiple inhomogeneities. Phys. Rev. Lett. 103(20), 207601 (2009)

    Google Scholar 

  25. A. Bussmann-Holder, A.R. Bishop, T. Egami, Relaxor ferroelectrics and intrinsic inhomogeneity. Europhys. Lett. (EPL) 71(2), 249–255 (2005)

    CAS  Google Scholar 

  26. S.-E. Park, T.R. Shrout, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804–1811 (1997)

    CAS  Google Scholar 

  27. S. Zhang, F. Li, High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective. J. Appl. Phys. 111, 031301 (2012)

    Google Scholar 

  28. K. Yao et al., Nonlinear dielectric thin films for high-power electric storage with energy density comparable with electrochemical supercapacitors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1968–1976 (2011)

    Google Scholar 

  29. X. Moya, S. Kar-Narayan, N.D. Mathur, Caloric materials near ferroic phase transitions. Nat. Mater. 13(5), 439–450 (2014)

    CAS  Google Scholar 

  30. F. Li et al., The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nat. Commun. 7, 13807 (2016)

    CAS  Google Scholar 

  31. F. Li, S. Zhang, L.-Q. Chen, The contributions of polar nanoregions to the dielectric and piezoelectric responses in domain-engineered relaxor-PbTiO3 crystals. Adv. Func. Mater. 27, 1700310 (2017)

    Google Scholar 

  32. V.V. Shvartsman, D.C. Lupascu, D.J. Green, Lead-free relaxor ferroelectrics. J. Am. Ceram. Soc. 95(1), 1–26 (2012)

    CAS  Google Scholar 

  33. L. Yang et al., Perovskite lead-free dielectrics for energy storage applications. Prog. Mater Sci. 102, 72–108 (2019)

    CAS  Google Scholar 

  34. N. Setter, L.E. Cross, The role of B-site cation disorder in diffuse phase transition behavior of perovskite ferroelectrics. J. Appl. Phys. 51(8), 4356–4360 (1980)

    CAS  Google Scholar 

  35. F. Chu, N. Setter, A.K. Tagantsev, The spontaneous relaxor-ferroelectric transition of Pb(Sc0.5Ta0.5)O3. J. Appl. Phys. 74(8), 5129–5134 (1993)

    CAS  Google Scholar 

  36. J. Kuwata, K. Uchino, S. Nomura, Dielectric and piezoelectric properties of 0.91Pb(Zn1/3Nb2/3)O3-PbTiO3 single crystals. Jpn. J. App. Phys. 21, 1298–1302 (1982)

    CAS  Google Scholar 

  37. P.M. Gehring, S.-E. Park, G. Shirane, Soft phonon anomalies in the relaxor ferroelectric Pb(Zn1/3Nb2/3)0.92Ti0.08O3. Phys. Rev. Lett. 84, 5216–5219 (2000)

    CAS  Google Scholar 

  38. Y. Yamashita et al., Effects of B-site ions on the eletromechanical coupling factors of Pb(B’B’’)O3-PbTiO3 piezoelectric materials. Jpn. J. App. Phys. 37, 5288–5291 (1998)

    CAS  Google Scholar 

  39. R.E. Cohen, Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992)

    CAS  Google Scholar 

  40. T. Egami, Atomistic mechanism of relaxor ferroelectricity. Ferroelectrics 267(1), 101–111 (2002)

    CAS  Google Scholar 

  41. R.E. Cohen, H. Krakauer, Lattice dynamics and origin of ferroelectricity in BaTiO3: linearized-augmented-plane-wave total-energy calculations. Phys. Rev. B Condens. Matter 42(10), 6416–6423 (1990)

    CAS  Google Scholar 

  42. G.A. Smolenskii, V.A. Isupov, Segnetoelektricheskie svoistva tverdykh rastvorov stannata bariya v titanate bariya. Zh. Tekh. Fiz. 24, 1375–1386 (1954)

    CAS  Google Scholar 

  43. V.V. Shvartsman et al., Diffuse phase transition in BaTi1−xSnxO3 ceramics: an intermediate state between ferroelectric and relaxor behavior. J. Appl. Phys. 99(12), 124111 (2006)

    Google Scholar 

  44. V.V. Shvartsman, J. Zhai, W. Kleemann, The dielectric relaxation in solid solutions BaTi1−xZrxO3. Ferroelectrics 379(1), 77–85 (2009)

    CAS  Google Scholar 

  45. V.V. Shvartsman et al., Crossover from ferroelectric to relaxor behavior in BaTi1−xSnxO3 solid solutions. Phase Trans. 81(11–12), 1013–1021 (2008)

    CAS  Google Scholar 

  46. Y. Liu et al., Structurally frustrated polar naoregions in BaTiO3-based relaxor ferroelectric systems. Appl. Phys. Lett. 91, 152907 (2007)

    Google Scholar 

  47. N. Abdelmoula et al., Relaxor or classical ferroelectric behavior in A-site substituted perovskite type Ba1−x(Sm0.5Na0.5)xTiO3. Solid State Sci. 8(8), 880–887 (2006)

    CAS  Google Scholar 

  48. M. Farhi et al., Relaxor-like and spectroscopic properties of niobium modified barium titanate. Eur. Phys. J. B 18, 605–610 (2000)

    CAS  Google Scholar 

  49. J. Ravez, A. Simon, Le premier relaxeur ferroelctrique oxyfluore. Phys. Stat. Sol. (A) 159, 517–522 (1997)

    CAS  Google Scholar 

  50. J. Ravez, A. Simon, Some solid state chemistry aspects of lead-free relaxor ferroelectrics. J. Solid State Chem. 162(2), 260–265 (2001)

    CAS  Google Scholar 

  51. J. Ravez, A. Simon, New lead-free relaxor ceramics derived from BaTiO3 by cationic heterovalent substitutions in the 12 C. N. crystallographic site. Solid State Sci. 2, 525–529 (2000)

    CAS  Google Scholar 

  52. A. Simon, J. Ravez, New lead-free non-stoichiometric perovskite relaxor ceramics derived from BaTiO3. Solid State Sci. 5(11–12), 1459–1464 (2003)

    CAS  Google Scholar 

  53. D. Fu et al., Anomalous phase diagram of ferroelectric (Ba, Ca)TiO3 single crystals with giant electromechanical response. Phys. Rev. Lett. 100(22), 227601 (2008)

    Google Scholar 

  54. G. Laurita et al., Average and local structure of the Pb-free ferroelectric perovskites(Sr, Sn)TiO3and(Ba, Ca, Sn)TiO3. Phys. Rev. B 92(21), 214109 (2015)

    Google Scholar 

  55. S. Venkateshwarlu et al., Relaxor behavior and electrothermal properties of Sn- and Nb-modified (Ba, Ca)TiO3 Pb-free ferroelectric. J. Mater. Res. 35(8), 1017–1027 (2020)

    CAS  Google Scholar 

  56. R. Comes, M. Lambert, A. Guinier, The chain structure of BaTiO3 and KNbO3. Solid State Commun. 6, 715–719 (1968)

    CAS  Google Scholar 

  57. L. Jiang et al., Local structure of NaNbO3: a neutron scattering study. Phys. Rev. B 88(1), 014105 (2013)

    Google Scholar 

  58. J. Rödel et al., Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92(6), 1153–1177 (2009)

    Google Scholar 

  59. I. Levin et al., Coupling of emergent octahedral rotations to polarization in (K, Na)NbO3 ferroelectrics. Sci. Rep. 7(1), 15620 (2017)

    CAS  Google Scholar 

  60. V. Petkov et al., Geometrical frustration and piezoelectric response in oxide ferroics. Phys. Rev. Mater. 4(1), 014405 (2020)

    CAS  Google Scholar 

  61. Y. Guo, K.-I. Kakimoto, H. Ohsato, Structure and electrical properties of lead-free (Na0.5K0.5)NbO3-BaTiO3 ceramics. Jpn. J. Appl. Phys. 43(9B), 6662–6666 (2004)

    CAS  Google Scholar 

  62. V. Bobnar, J. Bernard, M. Kosec, Relaxorlike dielectric properties and history-dependent effects in the lead-free K0.5Na0.5NbO3–SrTiO3 ceramic system. Appl. Phys. Lett. 85(6), 994–996 (2004)

    CAS  Google Scholar 

  63. Y. Guo, K.-I. Kakimoto, H. Ohsato, Dielectric and piezoelectric properties of lead-free (Na0.5K0.5)NbO3–SrTiO3 ceramics. Solid State Commun. 129(5), 279–284 (2004)

    CAS  Google Scholar 

  64. M. Kosec et al., New lead-free relaxors based on the K0.5Na0.5NbO3–SrTiO3 solid solution. J. Mater. Res. 19(6), 1849–1854 (2011)

    Google Scholar 

  65. V. Bobnar et al., Relaxorlike dielectric dynamics in the lead-free K0.5Na0.5NbO3-SrZrO3 ceramic system. J. Appl. Phys. 101(7), 074103 (2007)

    Google Scholar 

  66. H. Du et al., High Tm lead-free relaxor ferroelectrics with broad temperature usage range: 0.04BiScO3−0.96(K0.5Na0.5)NbO3. J. Appl. Phys. 104(4), 044104 (2008)

    Google Scholar 

  67. H. Du et al., Phase structure, dielectric properties, and relaxor behavior of (K0.5Na0.5)NbO3–(Ba0.5Sr0.5)TiO3 lead-free solid solution for high temperature applications. J. Appl. Phys 105(12), 124104 (2009)

    Google Scholar 

  68. A. Aydi et al., New ferroelectric and relaxor ceramics in the mixed oxide system NaNbO3–BaSnO3. Solid State Sci. 6(4), 333–337 (2004)

    CAS  Google Scholar 

  69. S.I. Raevskaya et al., Lead-free niobate ceramics with relaxor-like properties. Ferroelectrics 340(1), 107–112 (2006)

    CAS  Google Scholar 

  70. S.I. Raevskaya et al., Some properties of the relaxor-like behavior in sodium niobate-based binary solid solutions. Ferroelectrics 374(1), 122–127 (2010)

    Google Scholar 

  71. I.P. Raevski, S.A. Prosandeev, A new lead-free family of perovskites with a diffuse phase transition: NaNbO3-based solid solutions. J. Phys. Chem. Sol. 63, 1939–1950 (2002)

    CAS  Google Scholar 

  72. R. Jiménez, M.L. Sanjuán, B. Jiménez, Stabilization of the ferroelectric phase and relaxor-like behaviour in low Li content sodium niobates. J. Phys. Condens. Matter 16(41), 7493–7510 (2004)

    Google Scholar 

  73. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21(24), 2463–2485 (2009)

    CAS  Google Scholar 

  74. D. Lebeugle et al., Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields. Appl. Phys. Lett. 91(2), 022907 (2007)

    Google Scholar 

  75. T. Ozaki et al., Ferroelectric properties and nano-scaled domain structures in (1–x)BiFeO3-xBaTiO3 (0.33 < x < 0.50). Ferroelectrics 385(1), 6155–6161 (2009)

    Google Scholar 

  76. D. Zheng, R. Zuo, Enhanced energy storage properties in La(Mg1/2Ti1/2)O3-modified BiFeO3-BaTiO3 lead-free relaxor ferroelectric ceramics within a wide temperature range. J. Eur. Ceram. Soc. 37(1), 413–418 (2017)

    CAS  Google Scholar 

  77. D. Wang et al., Bismuth ferrite-based lead-free ceramics and multilayers with high recoverable energy density. J. Mater. Chem. A 6(9), 4133–4144 (2018)

    CAS  Google Scholar 

  78. H. Pan et al., Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. Nat. Commun. 9(1), 1813 (2018)

    Google Scholar 

  79. H. Yang, H. Qi, R. Zuo, Enhanced breakdown strength and energy storage density in a new BiFeO3-based ternary lead-free relaxor ferroelectric ceramic. J. Eur. Ceram. Soc. 39(8), 2673–2679 (2019)

    CAS  Google Scholar 

  80. A.R. Paterson et al., Relaxor-ferroelectric transitions: sodium bismuth titanate derivatives. MRS Bull. 43(8), 600–606 (2018)

    CAS  Google Scholar 

  81. R.R. McQuade, M.R. Dolgos, A review of the structure-property relationships in lead-free piezoelectric (1–x)Na0.5Bi0.5TiO3–(x)BaTiO3. J. Solid State Chem. 242, 140–147 (2016)

    CAS  Google Scholar 

  82. C. Tu, I.G. Siny, V.H. Schmidt, Sequence of dielectric anomalies and high-temperature relaxation behavior in Na1/2Bi1/2TiO3. Phys. Rev. B Condens. Matter 49(17), 11550–11559 (1994)

    CAS  Google Scholar 

  83. J. Kreisel et al., High-pressure Raman study of a relaxor ferroelectric: TheNa0.5Bi0.5TiO3 perovskite. Phys. Rev. B 63(17), 174106 (2001)

    Google Scholar 

  84. C. Ma et al., Domain structure-dielectric property relationship in lead-free (1 − x)(Bi1/2Na1/2)TiO3−xBaTiO3 ceramics. J. Appl. Phys. 108(10), 104105 (2010)

    Google Scholar 

  85. J. Gomah-Pettry, Sodium-bismuth titanate based lead-free ferroelectric materials. J. Eur. Ceram. Soc. 24(6), 1165–1169 (2004)

    CAS  Google Scholar 

  86. D. Rout et al., Dielectric and Raman scattering studies of phase transitions in the (100–x)Na0.5Bi0.5TiO3–xSrTiO3 system. J. Appl. Phys. 108(8), 084102 (2010)

    Google Scholar 

  87. R. Dittmer et al., Lead-free high-temperature dielectrics with wide operational range. J. Appl. Phys. 109(3), 034107 (2011)

    Google Scholar 

  88. F. Weyland et al., Electric field–temperature phase diagram of sodium bismuth titanate-based relaxor ferroelectrics. J. Mater. Sci. 53(13), 9393–9400 (2018)

    CAS  Google Scholar 

  89. Y. Li et al., Electromechanical and dielectric properties of Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3–BaTiO3 lead-free ceramics. Mater. Chem. Phys. 94(2–3), 328–332 (2005)

    CAS  Google Scholar 

  90. X. Zhou et al., Electrical properties and relaxor phase evolution of Nb-Modified Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3-SrTiO3 lead-free ceramics. J. Eur. Ceram. Soc. 39(7), 2310–2317 (2019)

    CAS  Google Scholar 

  91. Y.-M. Li et al., Dielectric and piezoelectric properties of Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3-NaNbO3 lead-free ceramics. J. Electroceram. 14, 53–58 (2005)

    CAS  Google Scholar 

  92. M.A. Beuerlein et al., Current understanding of structure–processing–property relationships in BaTiO3–Bi(M)O3 dielectrics. J. Am. Ceram. Soc. 99(9), 2849–2870 (2016)

    CAS  Google Scholar 

  93. H. Ogihara, C.A. Randall, S. Trolier-McKinstry, Weakly coupled relaxor behavior of BaTiO3-BiScO3 Ceramics. J. Am. Ceram. Soc. 92(1), 110–118 (2009)

    CAS  Google Scholar 

  94. N. Kumar et al., Multilayer ceramic capacitors based on relaxor BaTiO3-Bi(Zn1/2Ti1/2)O3 for temperature stable and high energy density capacitor applications. Appl. Phys. Lett. 106(25), 252901 (2015)

    Google Scholar 

  95. L. Wu, X. Wang, L. Li, Lead-free BaTiO3–Bi(Zn2/3Nb1/3)O3 weakly coupled relaxor ferroelectric materials for energy storage. RSC Adv. 6(17), 14273–14282 (2016)

    CAS  Google Scholar 

  96. T. Wang et al., Relaxor ferroelectric BaTiO3-Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J. Am. Ceram. Soc. 98(2), 559–566 (2015)

    CAS  Google Scholar 

  97. N. Raengthon et al., BaTiO3-Bi(Zn1/2Ti1/2)O3-BiScO3 ceramics for high-temperature capacitor applications. J. Am. Ceram. Soc. 95(11), 3554–3561 (2012)

    CAS  Google Scholar 

  98. S.S.N. Bharadwaja et al., Critical slowing down mechanism and reentrant dipole glass phenomena in (1–x)BaTiO3–xBiScO3(0.1⩽x⩽0.4): the high energy density dielectrics. Phys. Rev. B 83(2), 024106 (2011)

    Google Scholar 

  99. S.S.N. Bharadwaja et al., Reentrant dipole glass properties in (1–x)BaTiO3−xBiScO3, 0.1 ≤ x ≤ 0.4. Appl. Phys. Lett. 100(2), 022906 (2012)

    Google Scholar 

  100. V. Krayzman et al., Correlated rattling-ion origins of dielectric properties in reentrant dipole glasses BaTiO3-BiScO3. Appl. Phys. Lett. 107(19), 192903 (2015)

    Google Scholar 

  101. S. Zhang et al., Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers: a review. Prog. Mater. Sci. 68, 1–66 (2015)

    CAS  Google Scholar 

  102. G.H. Jonker, On the dielectric Curie-Weiss law and diffuse phase transition in ferroelectrics. Mater. Res. Bull. 18, 301–308 (1983)

    CAS  Google Scholar 

  103. K. Uchino, S. Nomura, Critical exponents of the dielectric constants in diffused phase-transition crystals. Ferroelectrics 44, 55–61 (1982)

    CAS  Google Scholar 

  104. S. Nayak et al., Effect of A-site substitutions on energy storage properties of BaTiO3-BiScO3 weakly coupled relaxor ferroelectrics. J. Am. Ceram. Soc. 102(10), 5919–5933 (2019)

    CAS  Google Scholar 

  105. P. Mohapatra et al., Relaxor antiferroelectric ceramics with ultrahigh efficiency for energy storage applications. J. Eur. Ceram. Soc. 39(15), 4735–4742 (2019)

    CAS  Google Scholar 

  106. H. Borkar et al., Room temperature lead-free relaxor–antiferroelectric electroceramics for energy storage applications. RSC Adv. 4(44), 22840–22847 (2014)

    CAS  Google Scholar 

  107. Z. Sun et al., Energy storage properties and relaxor behavior of lead-free Ba1-xSm2x/3Zr0.15Ti0.85O3 ceramics. Dalton Trans 46(41), 14341–14347 (2017)

    CAS  Google Scholar 

  108. T.F. Zhang et al., Energy-storage properties and high-temperature dielectric relaxation behaviors of relaxor ferroelectric Pb(Mg1/3Nb2/3)O3–PbTiO3ceramics. J. Phys. D Appl. Phys. (2016). https://doi.org/10.1088/0022-3727/49/9/095302

    Article  Google Scholar 

  109. L. Zhang et al., Influence of BaSnO3 additive on the energy storage properties of Na0.5Bi0.5TiO3-based relaxor ferroelectrics. J. Eur. Ceram. Soc. 38(5), 2304–2311 (2018)

    CAS  Google Scholar 

  110. M. Wei et al., Relaxor behavior of BaTiO3-BiYO3 perovskite materials for high energy density capacitors. Ceram. Int. 43(6), 4768–4774 (2017)

    CAS  Google Scholar 

  111. P.-Z. Ge et al., Energy storage properties and electrocaloric effect of Ba0.65Sr0.35TiO3 ceramics near room temperature. J. Mater. Sci. Mater. Electron. 29(2), 1075–1081 (2017)

    Google Scholar 

  112. H. Ogihara, C.A. Randall, S. Trolier-McKinstry, High-energy density capacitors utilizing 0.7 BaTiO3-0.3 BiScO3 ceramics. J. Am. Ceram. Soc. 92(8), 1719–1724 (2009)

    CAS  Google Scholar 

  113. X. Zhao et al., High-energy storage performance in lead-free (1-x)BaTiO3-xBi(Zn0.5Ti0.5)O3 relaxor ceramics for temperature stability applications. Ceram. Int. 43(12), 9060–9066 (2017)

    CAS  Google Scholar 

  114. H. Qi et al., Superior energy-storage capacitors with simultaneously giant energy density and efficiency using nanodomain engineered BiFeO3-BaTiO3-NaNbO3 lead-free bulk ferroelectrics. J. Adv. Energy Mater. 10(6), 1903338 (2019)

    Google Scholar 

  115. W.P. Cao et al., Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics. J. Eur. Ceram. Soc. 36(3), 593–600 (2016)

    CAS  Google Scholar 

  116. Z. Yang et al., Significantly enhanced recoverable energy storage density in potassium–sodium niobate-based lead free ceramics. J. Mater. Chem. A 4(36), 13778–13785 (2016)

    CAS  Google Scholar 

  117. B. Wang et al., Energy-storage properties of (1–x)Bi0.47Na0.47Ba0.06TiO3–xKNbO3 lead-free ceramics. J. Alloys Compd. 585, 14–18 (2014)

    CAS  Google Scholar 

  118. H. Vogel, Das temperature-abhangigkeitsgesetz der Viskositat von Flussigkeiten (the law of viscosity change with temperature). Z. Phys. 22, 645–646 (1922)

    Google Scholar 

  119. G.S. Fulcher, Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8, 339–355 (1925)

    CAS  Google Scholar 

  120. A. Kholkin et al., Surface domain structures and mesoscopic phase transition in relaxor ferroelectrics. Adv. Func. Mater. 21(11), 1977–1987 (2011)

    CAS  Google Scholar 

  121. T.R. Welberry, Diffuse X-ray scattering and models of disorder (Oxford University Press, Oxford, 2004)

    Google Scholar 

  122. S. Vakhrushev et al., The high-temperature structure of lead magnoniobte. J. Phys. Condens. Matter. 6, 4021 (1994)

    CAS  Google Scholar 

  123. S. Vakrushev et al., Synchrotron x-ray scattering study of lead magnoniobate relaxor ferroelectric crystals. J. Phys. Chem. Soids 57, 1517–1523 (1996)

    Google Scholar 

  124. S.B. Vakhrushev et al., Effect of electric field on neutron scattering in lead magnoniobate Phys. Solid State 40, 1728–1733 (1998)

    CAS  Google Scholar 

  125. H. You, Q.M. Zhang, Diffuse x-ray scattering study of lead magnesium niobate single crystals. Phys. Rev. Lett. 79, 3950–3953 (1997)

    CAS  Google Scholar 

  126. H. You, X-ray scattering study of soft-optic-mode freezing in lead magnesium niobate single crystal. J. Phys. Chem. Solids 61, 215–220 (2000)

    CAS  Google Scholar 

  127. G. Xu et al., Neutron elastic diffuse scattering study ofPb(Mg1/3Nb2/3)O3. Phys. Rev. B 69(6), 064112 (2004)

    Google Scholar 

  128. G. Xu et al., Three-dimensional mapping of diffuse scattering inPb(Zn1∕3Nb2∕3)O3 − xPbTiO3. Phys. Rev. B 70(17), 174109 (2004)

    Google Scholar 

  129. A. Bosak et al., Diffuse scattering in relaxor ferroelectrics: true three-dimensional mapping, experimental artefacts and modelling. Acta Crystallogr. A 68(Pt 1), 117–123 (2012)

    CAS  Google Scholar 

  130. N. Takesue, Y. Fujii, H. You, X-ray diffuse scattering study on ionic-pair displacement correlations in relaxor lead magnesium niobate. Phys. Rev. B 64(18), 184112 (2001)

    Google Scholar 

  131. R. Blinc, V. Laguta, B. Zalar, Field cooled and zero field cooled 207Pb NMR and the local structure of relaxor PbMg1/3Nb2/3O3. Phys. Rev. Lett. 91(24), 247601 (2003)

    Google Scholar 

  132. T.R. Welberry et al., Single-crystal neutron diffuse scattering and Monte Carlo study of the relaxor ferroelectric PbZn1/3Nb2/3O3(PZN). J. Appl. Crystallogr. 38(4), 639–647 (2005)

    CAS  Google Scholar 

  133. T.R. Welberry, D.J. Goossens, M.J. Gutmann, Chemical origin of nanoscale polar domains inPbZn1∕3Nb2∕3O3. Phys. Rev. B 74(22), 224108 (2006)

    Google Scholar 

  134. M. Paściak, M. Wołcyrz, A. Pietraszko, Interpretation of the diffuse scattering in Pb-based relaxor ferroelectrics in terms of three-dimensional nanodomains of the ⟨110⟩-directed relative interdomain atomic shifts. Phys. Rev. B 76(1), 014117 (2007)

    Google Scholar 

  135. A. Cervellino et al., Diffuse scattering from the lead-based relaxor ferroelectric PbMg1/3Ta2/3O3. J. Appl. Crystallogr. 44(3), 603–609 (2011)

    CAS  Google Scholar 

  136. Cervellino, A., et al., Diffuse scattering from the lead-based relaxor ferroelectric PbMg1/3Ta2/3O3. arXiv:0908.2920v2

  137. M.J. Krogstad et al., The relation of local order to material properties in relaxor ferroelectrics. Nat. Mater. 17(8), 718–724 (2018)

    CAS  Google Scholar 

  138. S.N. Gvasaliya et al., Quasi-elastic scattering, random fields and phonon-coupling effects in PbMg1/3Nb2/3O3. J. Phys. Condens. Matter 17(27), 4343–4359 (2005)

    CAS  Google Scholar 

  139. S.B. Vakhrushev et al., Glassy phenomena in disordered perovskite-like crystals. Ferroelectrics 90(1), 173–176 (1989)

    CAS  Google Scholar 

  140. SB, V., et al., Phys. Solid State, 1993. 37: p. 1993

  141. J. Hlinka, S. Kamba, J. Petzelt, J. Kulda, C.A. Randall, S.J. Zhang, Diffuse scattering in Pb(Zn1/3Nb2/3)O3 with 8% PbTiO3 by quasi-elastic neutron scattering. J. Phys. Condens. Matter 15, 4249–4257 (2003)

    CAS  Google Scholar 

  142. H. Hiraka et al., Cold neutron study on the diffuse scattering and phonon excitations in the relaxorPb(Mg1∕3Nb2∕3)O3. Phys. Rev. B 70(18), 184105 (2004)

    Google Scholar 

  143. R.A. Cowley, S.N. Gvasaliya, B. Roessli, Soft modes and relaxor ferroelectrics. Ferroelectrics 378(1), 53–62 (2009)

    CAS  Google Scholar 

  144. C. Stock et al., Interplay between static and dynamic polar correlations in relaxorPb(Mg1/3Nb2/3)O3. Phys. Rev. B 81(14), 144127 (2010)

    Google Scholar 

  145. A. Pramanick, X.P. Wang, C. Hoffmann, S.O. Diallo, M.R.V. Jorgensen, X.-L. Wang, Microdomain dynamics in single-crystal BaTiO3 during paraelectric-ferroelectric phase transition measured with time-of-flight neutron scattering. Phys. Rev. B 91, 174103 (2015)

    Google Scholar 

  146. F. Pforr, K.-C. Meyer, M. Major, K. Albe, W. Donner, Relaxation of dynamically disordered tetragonal platelets in the relaxor ferroelectric 0.964Na1/2Bi1/2TiO3-0.036BaTiO3. Phys. Rev. B 96, 184107 (2017)

    Google Scholar 

  147. T. Egami, S.J.L. Billinge, Underneath the Bragg Peaks (Elsevier, Oxford, 2012)

    Google Scholar 

  148. T. Egami, Local structure of ferroelectric materials. Annu. Rev. Mater. Res. 37(1), 297–315 (2007)

    CAS  Google Scholar 

  149. D. Hou et al., Local structures of perovskite dielectrics and ferroelectrics via pair distribution function analyses. J. Eur. Ceram. Soc. 38(4), 971–987 (2018)

    CAS  Google Scholar 

  150. W. Dmowski, M.K. Akbas, P.K. Davies, T. Egami, Local structure of Pb(Sc1/2Ta1/2)O3 and related compounds. J. Phys. Chem. Solids 61, 229–237 (2000)

    CAS  Google Scholar 

  151. I.K. Jeong et al., Direct observation of the formation of polar nanoregions in Pb(Mg1/3Nb2/3)O3 using neutron pair distribution function analysis. Phys. Rev. Lett. 94(14), 147602 (2005)

    Google Scholar 

  152. W. Dmowski et al., Local lattice dynamics and the origin of the relaxor ferroelectric behavior. Phys. Rev. Lett. 100(13), 137602 (2008)

    CAS  Google Scholar 

  153. B.D. Butler, T.R. Welberry, Calculation of diffuse scattering from simulated disordered crystals: a comparison with optical transforms. J. Appl. Cryst. 25, 391–399 (1992)

    Google Scholar 

  154. A. Pramanick et al., Stabilization of polar nanoregions in Pb-free ferroelectrics. Phys. Rev. Lett. 120(20), 207603 (2018)

    CAS  Google Scholar 

  155. J. Hlinka, Do we need the ether of polar nanoregions? J. Adv. Dielectr. 02(02), 12410006 (2012)

    Google Scholar 

  156. I. Grinberg, Y.H. Shin, A.M. Rappe, Molecular dynamics study of dielectric response in a relaxor ferroelectric. Phys. Rev. Lett. 103(19), 197601 (2009)

    Google Scholar 

  157. M. Sepliarsky, R.E. Cohen, First-principles based atomistic modeling of phase stability in PMN-xPT. J. Phys. Condens. Matter 23(43), 435902 (2011)

    CAS  Google Scholar 

  158. H. Takenaka, I. Grinberg, A.M. Rappe, Anisotropic local correlations and dynamics in a relaxor ferroelectric. Phys. Rev. Lett. 110(14), 147602 (2013)

    Google Scholar 

  159. H. Takenaka et al., Slush-like polar structures in single-crystal relaxors. Nature 546(7658), 391–395 (2017)

    CAS  Google Scholar 

  160. A.R. Akbarzadeh et al., Finite-temperature properties of Ba(Zr, Ti)O3 relaxors from first principles. Phys. Rev. Lett. 108(25), 257601 (2012)

    CAS  Google Scholar 

  161. M. Eremenko et al., Local atomic order and hierarchical polar nanoregions in a classical relaxor ferroelectric. Nat Commun 10(1), 2728 (2019)

    CAS  Google Scholar 

  162. J. Toulouse, B.E. Vugmeister, R. Pattnaik, Collective dynamics of off-center ions in K1-xLixTaO3: a model of relaxor behavior. Phys. Rev. Lett. 73, 3467–3470 (1994)

    CAS  Google Scholar 

  163. D. Phelan et al., Role of random electric fields in relaxors. Proc Natl Acad Sci U S A 111(5), 1754–1759 (2014)

    CAS  Google Scholar 

  164. D. Sherrington, BZT: a soft pseudospin glass. Phys. Rev. Lett. 111(22), 227601 (2013)

    Google Scholar 

  165. D. Sherrington, Pb(Mg1/3Nb2/3)O3: a minimal induced-moment soft pseudospin glass perspective. Phys. Rev. B 89(6), 064105 (2014)

    Google Scholar 

  166. K. Binder, A.P. Young, Spin glasses: experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58(4), 801–976 (1986)

    CAS  Google Scholar 

  167. C.J. Stringer et al., Scaling parameters in frustrated systems: spin glasses and relaxor ferroelectrics. Jpn. J. Appl. Phys. 46(3A), 1090–1093 (2007)

    CAS  Google Scholar 

  168. M.E. Manley et al., Phonon localization drives polar nanoregions in a relaxor ferroelectric. Nat Commun 5, 3683 (2014)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pramanick.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramanick, A., Nayak, S. Perspective on emerging views on microscopic origin of relaxor behavior. Journal of Materials Research 36, 1015–1036 (2021). https://doi.org/10.1557/s43578-020-00010-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-020-00010-7

Keywords

Navigation