Skip to main content
Log in

Reducing indentation size effect in metals by load function selection

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanoindentation is an integral technique in determining material properties at small length scales. The indentation size effect (ISE) manifests as increasing hardness as indent depths become shallower. This makes material comparison across length scales challenging. The objective of this work is to study how load function parameters influence hardness, especially at shallow depths where the ISE is most critical. Hardness values from indentation loading methods with different hold and cycling sequences were compared from tests on four pure metal samples. Results show a significant decrease in hardness after both long hold and repeated loading profiles. The decrease was larger at shallow depths, and materials with a lower hardness were found to have a larger percent decrease than harder materials. We discuss these observations in the context of Cottrell’s exhaustion creep and recommend that indentation load functions with hold periods or repeated loading be used to minimize observed ISE.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A.L. Romasco, L.H. Friedman, L. Fang, R.A. Meirom, T.E. Clark, R.G. Polcawich, J.S. Pulskamp, M. Dubey, C.L. Muhlstein, Deformation behavior of nanograined platinum films. Thin Solid Films 518(14), 3866 (2010)

    Article  CAS  Google Scholar 

  2. G. Molino, A. Dalpozzi, G. Ciapetti, M. Lorusso, C. Novara, M. Cavallo, N. Baldini, F. Giorgis, S. Fiorilli, C. Vitale-Brovarone, Osteoporosis-related variations of trabecular bone properties of proximal human humeral heads at different scale lengths. J. Mech. Behav. Biomed. Mater. 100, 103373 (2019)

    Article  CAS  Google Scholar 

  3. J. Yeager, K. Ramos, S. Singh, M. Rutherford, J. Majewski, D. Hooks, Nanoindentation of explosive polymer composites to simulate deformation and failure. Mater. Sci. Technol. 28, 1147 (2012)

    Article  CAS  Google Scholar 

  4. P. Trtik, B. Münch, P. Lura, A critical examination of statistical nanoindentation on model materials and hardened cement pastes based on virtual experiments. Cement Concr. Compos. 31(10), 705 (2009)

    Article  CAS  Google Scholar 

  5. V. Zanjani Zadeh, C.P. Bobko, Nano-mechanical properties of internally cured kenaf fiber reinforced concrete using nanoindentation. Cem Concr Composites 52(2), 9 (2014)

    Article  CAS  Google Scholar 

  6. J.L. Cuy, A.B. Mann, K.J. Livi, M.F. Teaford, T.P. Weihs, Nanoindentation mapping of the mechanical properties of human molar tooth enamel. Arch. Oral Biol. 47(4), 281 (2002)

    Article  CAS  Google Scholar 

  7. C.M. McCarter, R.F. Richards, S.D. Mesarovic, C.D. Richards, D.F. Bahr, D. McClain, J. Jiao, Mechanical compliance of photolithographically defined vertically aligned carbon nanotube turf. J. Mater. Sci. 41(23), 7872 (2006)

    Article  CAS  Google Scholar 

  8. D. Chrobak, R. Nowak, Nanoindentation of semiconductors: experiment and atomistic simulations. J. Phys. Conf. Ser. 281, 2028 (2011)

    Article  CAS  Google Scholar 

  9. M. Vanlandingham, J. Villarrubia, W. Guthrie, G. Meyers, Nanoindentation of polymers: an overview. Macromol. Symposia 167 (2001)

  10. M.K. Mishra, G.R. Desiraju, U. Ramamurty, A.D. Bond, Studying microstructure in molecular crystals with nanoindentation: intergrowth polymorphism in Felodipine. Angew. Chem. Int. Ed. 53(48), 13102 (2014)

    Article  CAS  Google Scholar 

  11. J. B. Pethica: in Ion Implantation into Metals, edited by V. Ashworth, W. Grant, and R. Procter (Pergamon, 1982), pp. 147–156.

  12. C.K. Dolph, D.J. da Silva, M.J. Swenson, J.P. Wharry, Plastic zone size for nanoindentation of irradiated Fe–9%Cr ODS. J. Nucl. Mater. 481, 33 (2016)

    Article  CAS  Google Scholar 

  13. M. Vincent, Q. Tong, N. Terziev, G. Daniel, C. Bustos, W.G. Escobar, I. Duchesne, A comparison of nanoindentation cell wall hardness and Brinell wood hardness in jack pine (Pinus banksiana Lamb.). Wood Sci. Technol. 48(1), 7 (2014)

    Article  CAS  Google Scholar 

  14. P.M. Sargent, Indentation size effect and strain-hardening. J. Mater. Sci. Lett. 8(10), 1139 (1989)

    Article  Google Scholar 

  15. M. Atkinson, Origin of the size effect in indentation of metals. Int. J. Mech. Sci. 33(10), 843 (1991)

    Article  Google Scholar 

  16. W.D. Nix, H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411 (1998)

    Article  CAS  Google Scholar 

  17. A.A. Elmustafa, D.S. Stone, Indentation size effect in polycrystalline FCC metals. Acta Mater. 50(14), 3641 (2002)

    Article  CAS  Google Scholar 

  18. W.W. Gerberich, N.I. Tymiak, J.C. Grunlan, M.F. Horstemeyer, M.I. Baskes, Interpretations of indentation size effects. J. Appl. Mech. 69(4), 433 (2002)

    Article  CAS  Google Scholar 

  19. A.A. Elmustafa, D.S. Stone, Stacking fault energy and dynamic recovery: do they impact the indentation size effect? Mater. Sci. Eng. A 358(1–2), 1 (2003)

    Article  CAS  Google Scholar 

  20. H. Li, The Nanoindentation Size Effects of Creep, The University of Hong Kong (Pokfulam, Hong Kong, 2004)

    Google Scholar 

  21. Y. Huang, F. Zhang, K. Hwang, W. Nix, G. Pharr, G. Feng, A model of size effects in nano-indentation. J. Mech. Phys. Solids 54(8), 1668 (2006)

    Article  Google Scholar 

  22. K. Durst, O. Franke, A. Böhner, M. Göken, Indentation size effect in Ni–Fe solid solutions. Acta Mater. 55(20), 6825 (2007)

    Article  CAS  Google Scholar 

  23. K. Durst, M. Göken, G.M. Pharr, Indentation size effect in spherical and pyramidal indentations. J. Phys. D 41(7), 074005 (2008)

    Article  CAS  Google Scholar 

  24. D.E. Stegall, Md.A. Mamun, B. Crawford, A. Elmustafa, Indentation size effect in FCC metals: an examination of experimental techniques and the bilinear behavior. J. Mater. Res. 27(12), 1543 (2012)

    Article  CAS  Google Scholar 

  25. S.-W. Lee, L. Meza, J.R. Greer, Cryogenic nanoindentation size effect in [0 0 1]-oriented face-centered cubic and body-centered cubic single crystals. Appl. Phys. Lett. 103(10), 101906 (2013)

    Article  CAS  Google Scholar 

  26. A.A. Elmustafa, D.S. Stone, Nanoindentation and the indentation size effect: kinetics of deformation and strain gradient plasticity. J. Mech. Phys. Solids 51(2), 357 (2003)

    Article  CAS  Google Scholar 

  27. G.M. Pharr, E.G. Herbert, Y. Gao, The indentation size effect: a critical examination of experimental observations and mechanistic interpretations. Annu. Rev. Mater. Res. 40(1), 271 (2010)

    Article  CAS  Google Scholar 

  28. K. Sangwal, Review: indentation size effect, indentation cracks and microhardness measurement of brittle crystalline solids - some basic concepts and trends. Cryst. Res. Technol. 44(10), 1019 (2009)

    Article  CAS  Google Scholar 

  29. G. Voyiadjis, M. Yaghoobi, Review of nanoindentation size effect: experiments and atomistic simulation. Curr. Comput. Aided Drug Des. 7(10), 321 (2017)

    Google Scholar 

  30. N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson, Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42(2), 475 (1994)

    Article  CAS  Google Scholar 

  31. J.B. Pethica, D. Tabor, Contact of characterised metal surfaces at very low loads: deformation and adhesion. Surf. Sci. 89(1), 182 (1979)

    Article  CAS  Google Scholar 

  32. H. Li, A. Ghosh, Y.H. Han, R.C. Bradt, The frictional component of the indentation size effect in low load microhardness testing. J. Mater. Res. 8(5), 1028 (1993)

    Article  CAS  Google Scholar 

  33. V. Maier, C. Schunk, M. Göken, K. Durst, Microstructure-dependent deformation behaviour of bcc-metals—indentation size effect and strain rate sensitivity. Philos. Mag. 95(16–18), 1766 (2015)

    Article  CAS  Google Scholar 

  34. J. Zhao, F. Wang, P. Huang, T.J. Lu, K.W. Xu, Depth dependent strain rate sensitivity and inverse indentation size effect of hardness in body-centered cubic nanocrystalline metals. Mater. Sci. Eng. A 615, 87 (2014)

    Article  CAS  Google Scholar 

  35. X. Ma, F. Li, Z. Sun, J. Hou, J. Li, X. Fang, Strain rate dependence of the indentation size effect in Ti–10V–2Fe–3Al alloy. Mater. Sci. Technol. 35(9), 1107 (2019)

    Article  CAS  Google Scholar 

  36. D. Chicot, E.S. Puchi-Cabrera, A. Iost, M.H. Staia, X. Decoopman, F. Roudet, G. Louis, Analysis of indentation size effect in copper and its alloys. Mater. Sci. Technol. 29(7), 868 (2013)

    Article  CAS  Google Scholar 

  37. J.E. Jakes, Improved methods for nanoindentation Berkovich probe calibrations using fused silica. J Mater Sci 53(7), 4814 (2018)

    Article  CAS  Google Scholar 

  38. O. Franke, J.C. Trenkle, C.A. Schuh, Temperature dependence of the indentation size effect. J. Mater. Res. 25(07), 1225 (2010)

    Article  CAS  Google Scholar 

  39. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(06), 1564 (1992)

    Article  CAS  Google Scholar 

  40. S. A. Asif and J. B. Pethica: in MRS Proceedings (Cambridge Univ Press, 1996), p. 201.

  41. B.N. Lucas, W.C. Oliver, G.M. Pharr, J.-L. Loubet, Time dependent deformation during indentation testing. MRS Proc. 436, 23–238 (1996)

    Article  Google Scholar 

  42. A.C. Fischer-Cripps, A simple phenomenological approach to nanoindentation creep. Mater. Sci. Eng. A 385(1–2), 74 (2004)

    Article  CAS  Google Scholar 

  43. A.H. Cottrell, The time laws of creep. J. Mech. Phys. Solids 1(1), 53 (1952)

    Article  Google Scholar 

  44. G.E. Dieter, Mechanical Metallurgy, 2nd edn. (McGraw-Hill, New York, 1976)

    Google Scholar 

  45. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1987)

    Google Scholar 

  46. D.F. Bahr, W.W. Gerberich, Plastic zone and pileup around large indentations. Metall. Mater. Trans. A 27(12), 3793 (1996)

    Article  Google Scholar 

  47. Y. Gaillard, C. Tromas, J. Woirgard, Quantitative analysis of dislocation pile-ups nucleated during nanoindentation in MgO. Acta Mater. 54(5), 1409 (2006)

    Article  CAS  Google Scholar 

  48. S.B. Biner, J.R. Morris, The effects of grain size and dislocation source density on the strengthening behaviour of polycrystals: a two-dimensional discrete dislocation simulation. Null 83(31–34), 3677 (2003)

    CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Maughan.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allen, E.M., Moradi, M. & Maughan, M.R. Reducing indentation size effect in metals by load function selection. Journal of Materials Research 36, 2915–2925 (2021). https://doi.org/10.1557/s43578-021-00299-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00299-y

Keywords

Navigation