Skip to main content
Log in

A direct characterization of interfacial interaction between asphalt binder and mineral fillers by atomic force microscopy

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The property of asphalt mastic directly affects the service performance of asphalt mixtures and pavements. Previous studies have demonstrated that the interaction between asphalt binder and mineral fillers has a significant effect on the performance of asphalt mastics. However, the interaction hasn’t been characterized by direct tests. In this study, an adsorption–separation test of asphalt binder on surface of mineral fillers was conducted to separate the structure asphalt binder and free asphalt binder. Atomic force microscope (AFM) PeakForce QNM mode was used to characterize the morphology and mechanical property of asphalt binder at different distances to filler surface. Results show that the effected thickness of binder–filler interaction was around 1 μm. Within this specific thickness, the “bee” structure of asphalt surface disappears gradually, and the modulus increases significantly when the tested samples are closer to the aggregate surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Anderson DA, Bahia HU, Dongre R (1992) Rheological properties of mineral filler-asphalt mastics and their relationship to pavement performance. In: Meininger RC (ed) Effects of aggregates and mineral fillers on asphalt mixture performance: ASTM STP 1147. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  2. Zulkati A, Diew WY, Delai DS (2012) Effects of fillers on properties of asphalt–concrete mixture. J Transport Eng 138(7):902–910

    Article  Google Scholar 

  3. Wang H, Al-Qadi IL, Faheem AF, Bahia HU, Yang SH, Reinke GH (2011) Effect of mineral filler characteristics on asphalt mastic and mixture rutting potential. Transport Res Rec J Transport Res Board 2208(2):33–39

    Article  Google Scholar 

  4. Curtis CW, Ensley K, Epps J (1993) Fundamental properties of asphalt-aggregate interactions including adhesion and absorption. SHRP-A-341 National Research Council, Washington, DC

  5. Zhang JP, Fan ZP, Hu DL, Hu Z, Pei JZ, Kong WC (2016) Evaluation of asphalt–aggregate interaction based on the rheological properties. Int J Pavement Eng. doi:10.1080/10298436.2016.1199868

    Google Scholar 

  6. Tan Y, Guo M (2014) Interfacial thickness and interaction between asphalt and mineral fillers. Mater Struct 47(4):605–614

    Article  Google Scholar 

  7. Clopotel C, Velasquez R, Bahia H (2012) Measuring physico-chemical interaction in mastics using glass transition. Road Mater Pavement Des 13(S1):304–320

    Article  Google Scholar 

  8. Moraes R, Bahia H (2015) Effect of mineral filler on changes in molecular size distribution of asphalts during oxidative ageing. Road Mater Pavement Des 16(S2):55–72

    Article  Google Scholar 

  9. Hesami E, Birgisson B, Kringos N (2014) Numerical and experimental evaluation of the influence of the filler–bitumen interface in mastics. Mater Struct 47:1325–1337

    Article  Google Scholar 

  10. Antunes V, Freire AC, Quaresma L, Micaelo R (2016) Effect of the chemical composition of fillers in the filler–bitumen interaction. Constr Build Mater 104:85–91

    Article  Google Scholar 

  11. Faheem AF, Bahia HU (2010) Modelling of asphalt mastic in terms of filler bitumen interaction. Road Mater Pavement Des 11:281–303

    Article  Google Scholar 

  12. Winniford RS (1961) The rheology of asphalt-filler systems as shown by the microviscometer. American Society for Testing and Materials, STP309, pp 109–120

  13. Tunnicliff DG (1962) A review of mineral filler. J Assoc Asphalt Paving Technol 31:118–150

    Google Scholar 

  14. Tan YQ, Guo M (2013) Study on the phase behavior of asphalt mastic. Constr Build Mater 47:311–317

    Article  Google Scholar 

  15. Tan YQ, Guo M (2013) Using surface free energy method to study the cohesion and adhesion of asphalt mastic. Constr Build Mater 47:254–260

    Article  Google Scholar 

  16. Tan YQ, Guo M (2014) Micro- and nano-characteration of interaction between asphalt and filler. J Test Eval 42(5):1089–1097

    Article  Google Scholar 

  17. Guo M, Tan YQ, Zhou SW (2014) Multiscale test research on interfacial adhesion property of cold mix asphalt. Constr Build Mater 68:769–776

    Article  Google Scholar 

  18. Guo M, Motamed A, Tan Y, Bhasin A (2016) Investigating the interaction between asphalt binder and fresh and simulated RAP aggregate. Mater Des 105:25–33

    Article  Google Scholar 

  19. Corbett LW (1969) Composition of asphalt based on generic fractionation, using solvent deasphaltening, elution–adsorption chromatography, and densimetric characterization. Anal Chem 41(4):576–579

    Article  Google Scholar 

  20. Dealy JM (1979) Rheological properties of oil sand bitumens. Can J Chem Eng 57(6):677–683

    Article  Google Scholar 

  21. Robertson RE (1991) Chemical properties of asphalts and their relationship to pavement performance. SHRP-A/UWP-91-510, National Research Council, Washington, DC

  22. Robertson RE, Branthaver JF, Harnsberger PM, Petersen JC, Dorrence SM, McKay JF, Turner TF, Pauli AT, Huang S-C, Huh J-D, Tauer JE, Thomas KP, Netzel DA, Miknis FP, Williams T (2001) Fundamental properties of asphalts and modified asphalts, volume I: interpretive report. FHWA-RD-99-212, Western Research Institute, Federal Highway Administration

  23. Sultana S, Bhasin A (2014) Effect of chemical composition on rheology and mechanical properties of asphalt binder. Constr Build Mater 72:293–300

    Article  Google Scholar 

  24. Veytskin Y, Bobko C, Castorena C, Kim YR (2015) Nanoindentation investigation of asphalt binder and mastic cohesion. Constr Build Mater 100:163–171

    Article  Google Scholar 

  25. Davis C, Castorena C (2015) Implications of physico-chemical interactions in asphalt mastics on asphalt microstructure. Constr Build Mater 94:83–89

    Article  Google Scholar 

  26. Das PK, Balieu R, Kringos N, Birgisson B (2015) On the oxidative ageing mechanism and its effect on asphalt mixtures morphology. Mater Struct 48:3113–3127

    Article  Google Scholar 

  27. Zhao S, Nahar SN, Schmets AJM, Huang B, Shu X, Scarpas T (2015) Investigation on the microstructure of recycled asphalt shingle binder and its blending with virgin bitumen. Road Mater Pavement Des 16(S1):21–38

    Article  Google Scholar 

  28. Jahangir R, Little D, Bhasin A (2015) Evolution of asphalt binder microstructure due to tensile loading determined using AFM and image analysis techniques. Int J Pavement Eng 16(4):337–349

    Article  Google Scholar 

  29. Allen RG, Little DN, Bhasin A (2012) Structural characterization of micromechanical properties in asphalt using atomic force microscopy. J Mater Civ Eng 24(10):1317–1327

    Article  Google Scholar 

  30. Lim SM, Mondal P (2014) Micro- and nano-scale characterization to study the thermal degradation of cement-based materials. Mater Charact 92:15–25

    Article  Google Scholar 

  31. Arvaniti EC, Juenger MCG, Bernal SA, Duchesne J, Courard L, Leroy S, Provis JL, Klemm A, De Belie N (2015) Determination of particle size, surface area, and shape of supplementary cementitious materials by different techniques. Mater Struct 48(11):3687–3701

    Article  Google Scholar 

  32. Hung AM, Fini EH (2015) AFM study of asphalt binder “bee” structures: origin, mechanical fracture, topological evolution, and experimental artifacts. RSC Adv 5:96972–96982

    Article  Google Scholar 

  33. Dasa PK, Baaja H, Tighea S, Kringos N (2016) Atomic force microscopy to investigate asphalt binders: a state-of-the-art review. Road Mater Pavement Des 17(3):693–718

    Article  Google Scholar 

  34. Loeber L, Sutton O, Morel J, Valleton JM, Muller G (1996) New direct observations of asphalts and asphalt binders by scanning electron microscopy and atomic force microscopy. J Microsc 182(1):32–39

    Article  Google Scholar 

  35. Masson JF, Leblond V, Margeson J (2006) Bitumen morphologies by phase-detection atomic force microscopy. J Microsc 221:17–29

    Article  MathSciNet  Google Scholar 

  36. Yu XK, Burnham NA, Tao MJ (2015) Surface microstructure of bitumen characterized by atomic force microscopy. Adv Colloid Interface Sci 218:17–33

    Article  Google Scholar 

  37. Pauli AT, Grimes RW, Beemer AG, Turner TF, Branthaver JF (2011) Morphology of asphalts, asphalt fractions and model wax-doped asphalts studied by atomic force microscopy. Int J Pavement Eng 12(4):291–309

    Article  Google Scholar 

  38. Sourty ED, Tamminga AY, Michels MAJ, Vellinga WP, Meijer HEH (2011) The microstructure of petroleum vacuum residue films for bituminous concrete: a microscopy approach. J Microsc 241(2):132–146

    Article  Google Scholar 

  39. Das PK, Kringos N, Wallqvist V, Birgisson B (2013) Micromechanical investigation of phase separation in bitumen by combining atomic force microscopy with differential scanning calorimetry results. Road Mater Pavement Des 14(S1):25–37

    Article  Google Scholar 

  40. Schmets A, Kringos N, Pauli T, Redelius P, Scarpas T (2010) Wax induced phase separation in bitumen. Int J Pavement Eng 11(6):555–563

    Article  Google Scholar 

  41. Lu XH, Langton M, Olofsson P, Redelius P (2005) Wax morphology in bitumen. J Mater Sci 40:1893–1900

    Article  Google Scholar 

  42. Maugis D (2000) Contact, Adhesion and Rupture of Elastic Solids. Springer Verlag, Berlin

    Book  MATH  Google Scholar 

  43. Nahar SN, Schmets AJM, Schitter G, Scarpas A (2016) Quantifying the thermomechanical response of bitumen from microphase properties. Transportation Research Record: J Transp Res Board 2574:101–110

    Article  Google Scholar 

  44. Hou Y, Wang L, Pauli T, Sun W (2015) Investigation of the asphalt self-healing mechanism using a phase-field model. J Mater Civ Eng 27(3):1–13

    Article  Google Scholar 

  45. Hou Y, Sun W, Das P, Song X, Wang L, Ge Z, Huang Y (2016) Coupled Navier–Stokes phase-field model to evaluate the microscopic phase separation in asphalt binder under thermal loading. J Mater Civ Eng 28(10):04016100

    Article  Google Scholar 

  46. Guo M, Bhasin A, Tan YQ (2017) Effect of mineral fillers adsorption on rheological and chemical properties of asphalt binder. Constr Build Mater (accepted)

Download references

Funding

This study was funded by Natural Science Foundation of Beijing, China (Grant Number: 8174071), China Postdoctoral Science Foundation (Grant Number: 2016M600926) and National Science Fund for Distinguished Young Scholars of China (Grant Number: 51225803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqiu Tan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, M., Tan, Y., Yu, J. et al. A direct characterization of interfacial interaction between asphalt binder and mineral fillers by atomic force microscopy. Mater Struct 50, 141 (2017). https://doi.org/10.1617/s11527-017-1015-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-017-1015-9

Keywords

Navigation