Skip to main content
Log in

Improving toughness of epoxy asphalt binder with reactive epoxidized SBS

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Brittleness is an inherent shortcoming of epoxy resin which results in the longitudinal fatigue cracking of mixtures during the long service time of orthotropic steel deck bridges. In this paper, this problem was addressed by introducing a reactive thermoplastic elastomer, epoxidized styrene–butadiene–styrene copolymer (ESBS) into epoxy asphalt binder (EAB). Epoxy ESBS modified asphalts (EESBAs) with various epoxidation degrees were prepared. Double phase separation occurred in the EESBAs. In the EESBAs with 18% and 31% epoxidation degrees, most of ESBS domains dispersed on the edge of the secondary asphalt phase and in the epoxy phase. Furthermore, the size and number of ESBS domains decreased in the epoxidation degree. However, un-epoxidized SBS domains completely dispersed the asphalt phase and all ESBS domains moved to the epoxy phase when the epoxidation degree increased to 39%. In EESBAs, the average diameters of asphalt domains increased in the epoxidation degree. The inclusion of ESBS increased the viscosity of the pure EAB and the viscosity of EESBAs increased in the epoxidation degree. Nevertheless, all EESBAs had at least a 150-min allowable construction time. By adding 2 wt% ESBS with 39% epoxidation degree, the glass transition temperature (Tg) decreased. The Tg of EESBAs decreased in the epoxidation degree. The inclusion of ESBS greatly enhanced the damping properties of the pure EAB. The elongation at break and toughness of the pure EAB were remarkably increased by 263% and 93%, respectively, with the incorporation of 2 wt% ESBS with 39% epoxidation degree. Furthermore, the toughness of EESBAs increased in the epoxidation degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Yin H, Zhang Y, Sun Y, Xu W, Yu D, Xie H, Cheng R (2015) Performance of hot mix epoxy asphalt binder and its concrete. Mater Struct 48(11):3825–3835. https://doi.org/10.1617/s11527-014-0442-0

    Article  Google Scholar 

  2. Sun Y, Han X, Su W, Gong J, Xi Z, Zhang J, Wang Q, Xie H (2020) Mechanical and bonding properties of pristine montmorillonite reinforced epoxy asphalt bond coats. Polym Compos 41(8):3034–3042. https://doi.org/10.1002/pc.25595

    Article  Google Scholar 

  3. Zhang Y, Pan X, Sun Y, Xu W, Pan Y, Xie H, Cheng R (2014) Flame retardancy, thermal, and mechanical properties of mixed flame retardant modified epoxy asphalt binders. Constr Build Mater 68:62–67. https://doi.org/10.1016/j.conbuildmat.2014.06.028

    Article  Google Scholar 

  4. Si J, Li Y, Wang J, Niyigena AR, Yu X, Jiang R (2020) Improving the compatibility of cold-mixed epoxy asphalt based on the epoxidized soybean oil. Constr Build Mater 243:118235. https://doi.org/10.1016/j.conbuildmat.2020.118235

    Article  Google Scholar 

  5. Zhang H, Gao P, Pan Y, Li K, Zhang Z, Geng F (2020) Development of cold-mix high-toughness resin and experimental research into its performance in a steel deck pavement. Constr Build Mater 235:117427. https://doi.org/10.1016/j.conbuildmat.2019.117427

    Article  Google Scholar 

  6. Medani T, Huurman M, Molenaar AAA (2005) Characterisation of some candidate surfacing materials for orthotropic steel bridge decks. In: Horvli I (ed) Proceedings Seventh International Conference on the Bearing Capacity of Roads, Railways and Airfields, Trondheim, Norway

  7. Garg AC, Mai Y-W (1988) Failure mechanisms in toughened epoxy resins—a review. Compos Sci Technol 31(3):179–223. https://doi.org/10.1016/0266-3538(88)90009-7

    Article  Google Scholar 

  8. Zhang Z, Sun J, Huang Z, Wang F, Jia M, Lv W, Ye J (2021) A laboratory study of epoxy/polyurethane modified asphalt binders and mixtures suitable for flexible bridge deck pavement. Constr Build Mater 274:122084. https://doi.org/10.1016/j.conbuildmat.2020.122084

    Article  Google Scholar 

  9. Luo S, Qian ZD Research on low temperature performance of epoxy asphalt mixture. In: Li S, Liu Y, Zhu R, Li H, Ding W (eds) Applied Mechanics and Materials, Switzerland, 2010. Trans Tech Publications, pp 1124–1128

  10. Yin C, Zhang H, Pan Y (2016) Cracking mechanism and repair techniques of epoxy asphalt on steel bridge deck pavement. Transp Res Rec 2550(1):123–130. https://doi.org/10.3141/2550-16

    Article  Google Scholar 

  11. Sun Y, Zhang Y, Xu K, Xu W, Yu D, Zhu L, Xie H, Cheng R (2015) Thermal, mechanical properties, and low-temperature performance of fibrous nanoclay-reinforced epoxy asphalt composites and their concretes. J Appl Polym Sci 132(12):41694. https://doi.org/10.1002/app.41694

    Article  Google Scholar 

  12. Sun Y, Liu Y, Jiang Y, Xu K, Xi Z, Xie H (2018) Thermal and mechanical properties of natural fibrous nanoclay reinforced epoxy asphalt adhesives. Int J Adhes Adhes 85:308–314. https://doi.org/10.1016/j.ijadhadh.2018.07.005

    Article  Google Scholar 

  13. Xue Y, Qian Z (2016) Development and performance evaluation of epoxy asphalt concrete modified with mineral fiber. Constr Build Mater 102:378–383. https://doi.org/10.1016/j.conbuildmat.2015.10.157

    Article  Google Scholar 

  14. Min Z, Wang Q, Xie Y, Xie J, Zhang B (2020) Influence of polyethylene glycol (PEG) chain on the performance of epoxy asphalt binder and mixture. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.121614

    Article  Google Scholar 

  15. Liu Y, Zhang J, Chen R, Cai J, Xi Z, Xie H (2017) Ethylene vinyl acetate copolymer modified epoxy asphalt binders: phase separation evolution and mechanical properties. Constr Build Mater 137:55–65. https://doi.org/10.1016/j.conbuildmat.2017.01.081

    Article  Google Scholar 

  16. Zhang J, Su W, Liu Y, Gong J, Xi Z, Zhang J, Wang Q, Xie H (2021) Laboratory investigation on the microstructure and performance of SBS modified epoxy asphalt binder. Constr Build Mater 270:121378. https://doi.org/10.1016/j.conbuildmat.2020.121378

    Article  Google Scholar 

  17. Jiang Y, Liu Y, Gong J, Li C, Xi Z, Cai J, Xie H (2018) Microstructures, thermal and mechanical properties of epoxy asphalt binder modified by SBS containing various styrene-butadiene structures. Mater Struct 51(4):86. https://doi.org/10.1617/s11527-018-1217-9

    Article  Google Scholar 

  18. Gong J, Han X, Su W, Xi Z, Cai J, Wang Q, Li J, Xie H (2020) Laboratory evaluation of warm-mix epoxy SBS modified asphalt binders containing Sasobit. J Build Eng 32:101550. https://doi.org/10.1016/j.jobe.2020.101550

    Article  Google Scholar 

  19. Liu Y, Zhang J, Jiang Y, Li C, Xi Z, Cai J, Xie H (2018) Investigation of secondary phase separation and mechanical properties of epoxy SBS-modified asphalts. Constr Build Mater 165:163–172. https://doi.org/10.1016/j.conbuildmat.2018.01.032

    Article  Google Scholar 

  20. Gong J, Liu Y, Jiang Y, Wang Q, Xi Z, Cai J, Xie H (2021) Performance of epoxy asphalt binder containing warm-mix asphalt additive. Int J Pavement Eng 22(2):223–232. https://doi.org/10.1080/10298436.2019.1597272

    Article  Google Scholar 

  21. Liu Y, Xi Z, Cai J, Xie H (2017) Laboratory investigation of the properties of epoxy asphalt rubber (EAR). Mater Struct 50(5):219. https://doi.org/10.1617/s11527-017-1089-4

    Article  Google Scholar 

  22. Su W, Han X, Gong J, Xi Z, Zhang J, Wang Q, Xie H (2020) Toughening epoxy asphalt binder using core-shell rubber nanoparticles. Constr Build Mater 258:119716. https://doi.org/10.1016/j.conbuildmat.2020.119716

    Article  Google Scholar 

  23. Xu P, Zhu X, Cong P, Du X, Zhang R (2018) Modification of alkyl group terminated hyperbranched polyester on paving epoxy asphalt. Constr Build Mater 165:295–302. https://doi.org/10.1016/j.conbuildmat.2017.12.182

    Article  Google Scholar 

  24. Ocando C (2016) Chemically functionalized block copolymers as reactive modifiers for nanostructuring and toughening epoxy thermosetting materials. In: Kortaberria G, Tercjak A (eds) Block copolymer nanocomposites. Pan Stanford Publishing Pte. Ltd., Singapore, pp 173–223

    Chapter  Google Scholar 

  25. Pandit R, Lach R, Grellmann W, Michler GH, Henning S, Saiter JM, Berkessel A, Adhikari R (2020) Chemical modification of SBS star block copolymer for templating nanostructures in epoxy resin blends. Mater Today Proc 29:1156–1160. https://doi.org/10.1016/j.matpr.2020.05.398

    Article  Google Scholar 

  26. Wu J (2019) Study on epoxidized poly (styrene-butadiene-styrene) modified epoxy resins. University of Akron, Akron

    Google Scholar 

  27. George SM, Puglia D, Kenny JM, Causin V, Parameswaranpillai J, Thomas S (2013) Morphological and mechanical characterization of nanostructured thermosets from epoxy and styrene-block-butadiene-block-styrene triblock copolymer. Ind Eng Chem Res 52(26):9121–9129. https://doi.org/10.1021/ie400813v

    Article  Google Scholar 

  28. Nian F, Ou J, Yong Q, Zhao Y, Pang H, Liao B (2018) Reactive block copolymers for the toughening of epoxies: effect of nanostructured morphology and reactivity. J Macromol Sci Part A 55(7):533–543. https://doi.org/10.1080/10601325.2018.1476826

    Article  Google Scholar 

  29. George SM, Puglia D, Kenny JM, Parameswaranpillai J, Thomas S (2014) Reaction-induced phase separation and thermomechanical properties in epoxidized styrene-block-butadiene-block-styrene triblock copolymer modified epoxy/DDM system. Ind Eng Chem Res 53(17):6941–6950. https://doi.org/10.1021/ie404124b

    Article  Google Scholar 

  30. Venturello C, D’Aloisio R (1988) Quaternary ammonium tetrakis(diperoxotungsto)phosphates(3-) as a new class of catalysts for efficient alkene epoxidation with hydrogen peroxide. J Org Chem 53(7):1553–1557. https://doi.org/10.1021/jo00242a041

    Article  Google Scholar 

  31. Jian X, Hay AS (1991) Catalytic epoxidation of styrene–butadiene triblock copolymer with hydrogen peroxide. J Polym Sci, Part A: Polym Chem 29(8):1183–1189. https://doi.org/10.1002/pola.1991.080290812

    Article  Google Scholar 

  32. Remya VPR, Jose Varghese R, Parani S, Sakho EHM, Oluwafemi OS, Thomas S (2021) Compatibilization of epoxidized triblock copolymer on the generation of self-assembled nanostructured epoxies and their surface wettability. J Appl Polym Sci 138(10):49985. https://doi.org/10.1002/app.49985

    Article  Google Scholar 

  33. Serrano E, Larrañaga M, Remiro PM, Mondragon I, Carrasco PM, Pomposo JA, Mecerreyes D (2004) Synthesis and characterization of epoxidized styrene-butadiene block copolymers as templates for nanostructured thermosets. Macromol Chem Phys 205(7):987–996. https://doi.org/10.1002/macp.200300123

    Article  Google Scholar 

  34. Wang SM, Tsiang RCC (1996) Epoxidation of partially hydrogenated styrene-butadiene block copolymers using peracetic acid in a cyclohexane/water heterogeneous system. J Polym Sci Part A Polym Chem 34(8):1483–1491. https://doi.org/10.1002/(SICI)1099-0518(199606)34:8%3c1483::AID-POLA12%3e3.0.CO;2-4

    Article  Google Scholar 

  35. Zuchowska D (1980) Polybutadiene modified by epoxidation: 1: effect of polybutadiene microstructure on the reactivity of double bonds. Polymer 21(5):514–520. https://doi.org/10.1016/0032-3861(80)90217-7

    Article  Google Scholar 

  36. Pandit R, Giri J, Michler GH, Lach R, Grellmann W, Youssef B, Saiter JM, Adhikari R (2012) Effect of epoxidation of diene component of SBS block copolymer on morphology and mechanical properties. Macromol Symp 315(1):152–159. https://doi.org/10.1002/masy.201250519

    Article  Google Scholar 

  37. Chen R, Zhao R, Liu Y, Cai J, Xi Z, Zhang J, Wang Q, Xie H (2021) Development of eco-friendly fire-retarded warm-mix epoxy asphalt binders using reactive polymeric flame retardants for road tunnel pavements. Constr Build Mater 284:122752. https://doi.org/10.1016/j.conbuildmat.2021.122752

    Article  Google Scholar 

  38. Hsiue G-H, Huang W-K, Hou W-H (1989) Dynamic mechanical and dielectric properties of epoxidized SBS triblock copolymer. J Polym Sci Part A Polym Chem 27(12):4119–4128. https://doi.org/10.1002/pola.1989.080271219

    Article  Google Scholar 

  39. Zhu J, Birgisson B, Kringos N (2014) Polymer modification of bitumen: advances and challenges. Eur Polym J 54:18–38. https://doi.org/10.1016/j.eurpolymj.2014.02.005

    Article  Google Scholar 

  40. Ocando C, Fernández R, Tercjak A, Mondragon I, Eceiza A (2013) Nanostructured thermoplastic elastomers based on sbs triblock copolymer stiffening with low contents of epoxy system. Morphol Behav Mech Prop Macromol 46(9):3444–3451. https://doi.org/10.1021/ma400152g

    Article  Google Scholar 

  41. George SM, Puglia D, Kenny JM, Jyotishkumar P, Thomas S (2012) Cure kinetics and thermal stability of micro and nanostructured thermosetting blends of epoxy resin and epoxidized styrene-block-butadiene-block-styrene triblock copolymer systems. Polym Eng Sci 52(11):2336–2347. https://doi.org/10.1002/pen.23183

    Article  Google Scholar 

  42. Zhang Y, Sun Y, Xu K, Yuan Z, Zhang J, Chen R, Xie H, Cheng R (2015) Brucite modified epoxy mortar binders: flame retardancy, thermal and mechanical characterization. Constr Build Mater 93:1089–1096. https://doi.org/10.1016/j.conbuildmat.2015.05.037

    Article  Google Scholar 

  43. Yin H, Jin H, Wang C, Sun Y, Yuan Z, Xie H, Wang Z, Cheng R (2014) Thermal, damping, and mechanical properties of thermosetting epoxy-modified asphalts. J Therm Anal Calorim 115(2):1073–1080. https://doi.org/10.1007/s10973-013-3449-9

    Article  Google Scholar 

  44. Sun Y, Xu K, Zhang Y, Zhang J, Chen R, Yuan Z, Xie H, Cheng R (2016) Organic montmorillonite reinforced epoxy mortar binders. Constr Build Mater 107:378–384. https://doi.org/10.1016/j.conbuildmat.2016.01.012

    Article  Google Scholar 

  45. Chen R, Gong J, Jiang Y, Wang Q, Xi Z, Xie H (2018) Halogen-free flame retarded cold-mix epoxy asphalt binders: rheological, thermal and mechanical characterization. Constr Build Mater 186:863–870. https://doi.org/10.1016/j.conbuildmat.2018.08.018

    Article  Google Scholar 

  46. Jiang Y, Han X, Gong J, Xi Z, Cai J, Wang Q, Ding G, Xie H (2019) Laboratory investigation of epoxy asphalt binder modified by brominated SBS. Constr Build Mater 228:116733. https://doi.org/10.1016/j.conbuildmat.2019.116733

    Article  Google Scholar 

  47. Esposito LH, Ramos JA, Kortaberria G (2014) Dispersion of carbon nanotubes in nanostructured epoxy systems for coating application. Prog Org Coat 77(9):1452–1458. https://doi.org/10.1016/j.porgcoat.2014.05.001

    Article  Google Scholar 

  48. Li C, Han X, Gong J, Su W, Xi Z, Zhang J, Wang Q, Xie H (2020) Impact of waste cooking oil on the viscosity, microstructure and mechanical performance of warm-mix epoxy asphalt binder. Constr Build Mater 251:118994. https://doi.org/10.1016/j.conbuildmat.2020.118994

    Article  Google Scholar 

  49. Sun Y, Gong J, Liu Y, Jiang Y, Xi Z, Cai J, Xie H (2019) Viscous, damping, and mechanical properties of epoxy asphalt adhesives containing different penetration-grade asphalts. J Appl Polym Sci 136(5):47027. https://doi.org/10.1002/app.47027

    Article  Google Scholar 

  50. Sun Y, Liu Y, Gong J, Han X, Xi Z, Zhang J, Wang Q (2021) Thermal and bonding properties of epoxy asphalt bond coats. J Therm Anal Calorim. https://doi.org/10.1007/s10973-021-10630-8

    Article  Google Scholar 

  51. Chong HM, Taylor AC (2013) The microstructure and fracture performance of styrene–butadiene–methylmethacrylate block copolymer-modified epoxy polymers. J Mater Sci 48(19):6762–6777. https://doi.org/10.1007/s10853-013-7481-8

    Article  Google Scholar 

  52. Masson JF, Bundalo-Perc S, Delgado A (2005) Glass transitions and mixed phases in block SBS. J Polym Sci Part B Polym Phys 43(3):276–279. https://doi.org/10.1002/polb.20319

    Article  Google Scholar 

  53. Hsiue G-H, Yang J-M (1990) Epoxidation of styrene–butadiene–styrene block copolymer and use for gas permeation. J Polym Sci Part A Polym Chem 28(13):3761–3773. https://doi.org/10.1002/pola.1990.080281319

    Article  Google Scholar 

  54. Wang Y, Wei Z, Li Y (2016) Highly toughened polylactide/epoxidized poly(styrene-b-butadiene-b-styrene) blends with excellent tensile performance. Eur Polym J 85:92–104. https://doi.org/10.1016/j.eurpolymj.2016.10.019

    Article  Google Scholar 

  55. Ocando C, Tercjak A, Serrano E, Ramos JA, Corona-Galván S, Parellada MD, Fernández-Berridi MJ, Mondragon I (2008) Micro- and macrophase separation of thermosetting systems modified with epoxidized styrene-block-butadiene- block-styrene linear triblock copolymers and their influence on final mechanical properties. Polym Int 57(12):1333–1342. https://doi.org/10.1002/pi.2478

    Article  Google Scholar 

  56. Wang H, Liu Y, Zhang J, Li T, Hu Z, Yu Y (2015) Effect of curing conversion on the water sorption, corrosion resistance and thermo-mechanical properties of epoxy resin. RSC Adv 5(15):11358–11370. https://doi.org/10.1039/C4RA13678K

    Article  Google Scholar 

  57. Ferry JD (1980) Viscoelastic properties of polymers. John Wiley, New York

    Google Scholar 

  58. Serrano E, Tercjak A, Kortaberria G, Pomposo JA, Mecerreyes D, Zafeiropoulos NE, Stamm M, Mondragon I (2006) Nanostructured thermosetting systems by modification with epoxidized styrene−butadiene star block copolymers. Effect of epoxidation degree. Macromolecules 39(6):2254–2261. https://doi.org/10.1021/ma0515477

    Article  Google Scholar 

  59. Yamanaka K, Inoue T (1989) Structure development in epoxy resin modified with poly(ether sulphone). Polymer 30(4):662–667. https://doi.org/10.1016/0032-3861(89)90151-1

    Article  Google Scholar 

  60. Chang MCO, Thomas DA, Sperling LH (1987) Characterization of the area under loss modulus and tan δ–temperature curves: acrylic polymers and their sequential interpenetrating polymer networks. J Appl Polym Sci 34(1):409–422. https://doi.org/10.1002/app.1987.070340132

    Article  Google Scholar 

  61. Gong J, Liu Y, Wang Q, Xi Z, Cai J, Ding G, Xie H (2019) Performance evaluation of warm mix asphalt additive modified epoxy asphalt rubbers. Constr Build Mater 204:288–295. https://doi.org/10.1016/j.conbuildmat.2019.01.197

    Article  Google Scholar 

  62. Yao S (1994) Means to widen the temperature range of high damping behavior by IPN formation. In: Klempner D, Frisch KC (eds) Advances in interpenetrating polymer networks, vol IV. Technomic Publishing Company. Lancaster, PA, pp 243–286

    Google Scholar 

  63. Han X, Su W, Gong J, Xi Z, Zhang J, Wang Q, Xie H (2021) Microstructure and dynamic mechanical properties epoxy/asphaltene composites. J Therm Anal Calorim. https://doi.org/10.1007/s10973-021-10689-3

    Article  Google Scholar 

  64. Keskkula H, Turley SG, Boyer RF (1971) The significance of the rubber damping peak in rubber-modified polymers. J Appl Polym Sci 15(2):351–367. https://doi.org/10.1002/app.1971.070150209

    Article  Google Scholar 

  65. Xie H, Zhao R, Wang R, Xi Z, Yuan Z, Zhang J, Wang Q (2021) Influence of thermal shock on the performance of B-staged epoxy bond coat for orthotropic steel bridge pavements. Constr Build Mater 294:123598. https://doi.org/10.1016/j.conbuildmat.2021.123598

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingjun Wang or Hongfeng Xie.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Zhao, R., Xi, Z. et al. Improving toughness of epoxy asphalt binder with reactive epoxidized SBS. Mater Struct 54, 145 (2021). https://doi.org/10.1617/s11527-021-01744-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-021-01744-4

Keywords

Navigation