Skip to main content
Log in

Level-direction decomposition analysis with a focus on image watermarking framework

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

This research addresses the new level-direction decomposition in the area of image watermarking as the further development of investigations. The main process of realizing a watermarking framework is to generate a watermarked image with a focus on contourlet embedding representation. The approach performance is evaluated through several indices including the peak signal-to-noise ratio and structural similarity, whereby a set of attacks are carried out using a module of simulated attacks. The obtained information is analyzed through a set of images, using different color models, to enable the calculation of normal correlation. The module of the inverse of contourlet embedding representation is correspondingly employed to obtain the present watermarked image, as long as a number of original images are applied to a scrambling module, to represent the information in disorder. This allows us to evaluate the performance of the proposed approach by analyzing a complicated system, where a deci-sion making system is designed to find the best level and the corresponding direction regarding contourlet embedding represen-tation. The results are illustrated in appropriate level-direction decomposition. The key contribution lies in using a new integration of a set of subsystems, employed based upon the novel mechanism in contourlet embedding representation, in association with the decision making system. The presented approach is efficient compared with state-of-the-art approaches, under a number of serious attacks. A number of benchmarks are obtained and considered along with the proposed framework outcomes. The results support our ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdallah, H.A., Ghazy, R.A., Kasban, H., et al., 2014. Ho-momorphic image watermarking with a singular value decomposition algorithm. Inform. Process. Manag., 50(6):909–923. http://dx.doi.org/10.1016/j.ipm.2014.07.001

    Article  Google Scholar 

  • Agarwal, C., Mishra, A., Sharma, A., 2013. Gray-scale image watermarking using GA-BPN hybrid network. J. Vis. Commun. Image Represent., 24(7):1135–1146. http://dx.doi.org/10.1016/j.jvcir.2013.07.007

    Article  Google Scholar 

  • Agarwal, C., Mishra, A., Sharma, A., 2015. A novel gray-scale image watermarking using hybrid Fuzzy-BPN architec-ture. Egypt. Inform. J., 16(1):83–102. http://dx.doi.org/10.1016/j.eij.2015.01.002

    Article  Google Scholar 

  • Ali, M., Ahn, C.W., 2015. Comments on “Optimized gray-scale image watermarking using DWT-SVD and firefly algorithm”. Exp. Syst. Appl., 42(5):2392–2394. http://dx.doi.org/10.1016/j.eswa.2014.10.045

    Article  Google Scholar 

  • Ali, M., Ahn, C.W., Pant, M., et al., 2015. An image water-marking scheme in wavelet domain with optimized compensation of singular value decomposition via artifi-cial bee colony. Inform. Sci., 301:44–60. http://dx.doi.org/10.1016/j.ins.2014.12.042

    Article  Google Scholar 

  • Al-Otum, H.M., 2014. Semi-fragile watermarking for gray-scale image authentication and tamper detection based on an adjusted expanded-bit multiscale quantization-based technique. J. Vis. Commun. Image Represent., 25(5):1064–1081. http://dx.doi.org/10.1016/j.jvcir.2013.12.017

    Article  Google Scholar 

  • Cai, N., Zhu, N.N., Weng, S.W., et al., 2015. Difference angle quantization index modulation scheme for image water-marking. Signal Process. Image Commun., 34:52–60. http://dx.doi.org/10.1016/j.image.2015.03.010

    Article  Google Scholar 

  • Chen, B.J., Coatrieux, G., Chen, G., et al., 2014. Full 4-D quaternion discrete Fourier transform based watermark-ing for color images. Dig. Signal Process., 28:106–119. http://dx.doi.org/10.1016/j.dsp.2014.02.010

    Article  Google Scholar 

  • Chen, H.Y., Zhu, Y.S., 2012. A robust watermarking algorithm based on QR factorization and DCT using quantization index modulation technique. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 13(8):573–584. http://dx.doi.org/10.1631/jzus.C1100338

    Article  Google Scholar 

  • Dadkhah, S., Manaf, A.A., Hori, Y., et al., 2014. An effective SVD-based image tampering detection and self-recovery using active watermarking. Signal Process. Image Commun., 29(10):1197–1210. http://dx.doi.org/10.1016/j.image.2014.09.001

    Article  Google Scholar 

  • Dinh, D.L., Lim, M.J., Thang, N.D., et al., 2014. Real-time 3D human pose recovery from a single depth image using principal direction analysis. Appl. Intell., 41(2):473–486. http://dx.doi.org/10.1007/s10489-014-0535-z

    Article  Google Scholar 

  • Do, M.N., Vetterli, M., 2001. Pyramidal directional filter banks and curvelets. Proc. Int. Conf. on Image Processing. http://dx.doi.org/10.1109/ICIP.2001.958075

    Google Scholar 

  • Guo, J.M., Prasetyo, H., 2014. False-positive-free SVD-based image watermarking. J. Vis. Commun. Image Represent., 25(5):1149–1163. http://dx.doi.org/10.1016/j.jvcir.2014.03.012

    Article  Google Scholar 

  • Lei, B.Y., Tan, E.L., Chen, S.P., et al., 2014. Reversible wa-termarking scheme for medical image based on differen-tial evolution. Exp. Syst. Appl., 41(7):3178–3188. http://dx.doi.org/10.1016/j.eswa.2013.11.019

    Article  Google Scholar 

  • Makbol, N.M., Khoo, B.E., 2014. A new robust and secure digital image watermarking scheme based on the integer wavelet transform and singular value decomposition. Dig. Signal Process., 33:134–147. http://dx.doi.org/10.1016/j.dsp.2014.06.012

    Article  Google Scholar 

  • Mishra, A., Agarwal, C., Sharma, A., et al., 2014. Optimized gray-scale image watermarking using DWT–SVD and Firefly Algorithm. Exp. Syst. Appl., 41(17):7858–7867. http://dx.doi.org/10.1016/j.eswa.2014.06.011

    Article  Google Scholar 

  • Niu, P.P., Wang, X.Y., Yang, Y.P., et al., 2011. A novel color image watermarking scheme in nonsampled contourlet-domain. Exp. Syst. Appl., 38(3):2081–2098. http://dx.doi.org/10.1016/j.eswa.2010.07.147

    Article  Google Scholar 

  • Ouyang, J., Coatrieux, G., Chen, B., et al., 2015. Color image watermarking based on quaternion Fourier transform and improved uniform log-polar mapping. Comput. Electr. Eng., 38(3):2081–2098. http://dx.doi.org/10.1016/j.eswa.2010.07.147

    Google Scholar 

  • Qi, M., Li, B.Z., Sun, H.F., 2015. Image watermarking using polar harmonic transform with parameters in SL (2, R). Signal Process. Image Commun., 31:161–173. http://dx.doi.org/10.1016/j.image.2014.12.009

    Article  Google Scholar 

  • Shao, Z.H., Duan, Y.P., Coatrieux, G., et al., 2015. Combining double random phase encoding for color image water-marking in quaternion gyrator domain. Opt. Commun., 343:56–65. http://dx.doi.org/10.1016/j.optcom.2015.01.002

    Article  Google Scholar 

  • Su, Q.T., Niu, Y.G., Wang, G., et al., 2014. Color image blind watermarking scheme based on QR decomposition. Sig-nal Process., 94:219–235. http://dx.doi.org/10.1016/j.sigpro.2013.06.025

    Article  Google Scholar 

  • Tao, H., Li, C.M., Zain, J.M., et al., 2014. Robust image wa-termarking theories and techniques: a review. J. Appl. Res. Technol., 12(1):122–138. http://dx.doi.org/10.1016/S1665-6423(14)71612-8

    Article  Google Scholar 

  • Tsougenis, E.D., Papakostas, G.A., Koulouriotis, D.E., et al., 2013. Towards adaptivity of image watermarking in polar harmonic transforms domain. Opt. Laser Technol., 54:84–97. http://dx.doi.org/10.1016/j.optlastec.2013.05.004

    Article  Google Scholar 

  • Tsougenis, E.D., Papakostas, G.A., Koulouriotis, D.E., et al., 2014. Adaptive color image watermarking by the use of quaternion image moments. Exp. Syst. Appl., 41(14):6408–6418. http://dx.doi.org/10.1016/j.eswa.2014.04.021

    Article  Google Scholar 

  • Wang, H., Ho, A.T.S., Li, S.J., 2014. A novel image restora-tion scheme based on structured side information and its application to image watermarking. Signal Process. Im-age Commun., 29(7):773–787. http://dx.doi.org/10.1016/j.image.2014.05.001

    Article  Google Scholar 

  • Wang, X.Y., Niu, P.P., Yang, H.Y., et al., 2014. A new robust color image watermarking using local quaternion expo-nent moments. Inform. Sci., 277:731–754. http://dx.doi.org/10.1016/j.ins.2014.02.158

    Article  Google Scholar 

  • Yadav, A.K., Vashisth, S., Singh, H., et al., 2015. A phase-image watermarking scheme in gyrator domain using Devil’s vortex Fresnel lens as a phase mask. Opt. Commun., 344(1):172–180. http://dx.doi.org/10.1016/j.optcom.2015.01.019

    Article  Google Scholar 

  • Yang, H.Y., Zhang, Y., Wang, P., et al., 2014. A geometric correction based robust color image watermarking scheme using quaternion exponent moments. Optik Int. J. Light Electron Opt., 125(16):4456–4469. http://dx.doi.org/10.1016/j.ijleo.2014.02.028

    Article  Google Scholar 

  • Yu, M., Wang, J., Jiang, G.Y., et al., 2015. New fragile wa-termarking method for stereo image authentication with localization and recovery. AEU Int. J. Electron. Commun., 69(1):361–370. http://dx.doi.org/10.1016/j.aeue.2014.10.006

    Article  Google Scholar 

  • Zhan, Y.Z., Li, Y.T., Wang, X.Y., et al., 2014. A blind water-marking algorithm for 3D mesh models based on vertex curvature. J. Zhejiang Univ.-Sci. C (Comput. & Electron.) 15(5):351–362. http://dx.doi.org/10.1631/jzus.C1300306

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Mazinan.

Additional information

Project supported by the Islamic Azad University, Iran

ORCID: M. F. KAZEMI, http://orcid.org/0000-0001-6557-9437; A. H. MAZINAN, http://orcid.org/0000-0002-8810-9574

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemi, M.F., Pourmina, M.A. & Mazinan, A.H. Level-direction decomposition analysis with a focus on image watermarking framework. Frontiers Inf Technol Electronic Eng 17, 1199–1217 (2016). https://doi.org/10.1631/FITEE.1500165

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500165

Key words

CLC number

Navigation