Skip to main content
Log in

Identification of candidate genes for drought stress tolerance in rice by the integration of a genetic (QTL) map with the rice genome physical map

  • Biotechnology
  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

Genetic improvement for drought stress tolerance in rice involves the quantitative nature of the trait, which reflects the additive effects of several genetic loci throughout the genome. Yield components and related traits under stressed and well-water conditions were assayed in mapping populations derived from crosses of Azucena×IR64 and Azucena x Bala. To find the candidate rice genes underlying Quantitative Trait Loci (QTL) in these populations, we conducted in silico analysis of a candidate region flanked by the genetic markers RM212 and RM319 on chromosome 1, proximal to the semi-dwarf (sd1) locus. A total of 175 annotated genes were identified from this region. These included 48 genes annotated by functional homology to known genes, 23 pseudogenes, 24 ab initio predicted genes supported by an alignment match to an EST (Expressed sequence tag) of unknown function, and 80 hypothetical genes predicted solely by ab initio means. Among these, 16 candidate genes could potentially be involved in drought stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S.F., Warren, G., Webb, M., Bugene, W.M., David, J.L., 1990. Basic local alignment search tool.J Mol Biol,215:403–410.

    Article  CAS  Google Scholar 

  • Arisz, S.A., Valianpour, F., van Gennip, A.H., Munnik, T., 2003. Substrate preference of stress-activated phospholipase D inChlamydomonas and its contribution to PA formation.Pant J,34:595–604.

    CAS  Google Scholar 

  • Arumugam, K., Lafitte, R., Chen, J., Bennet, J., 2005. Expression microarrays and their application in drought stress research.Field Crops Research, in press.

  • Bruskiewich, R.M., Cosico, A.B., Eusebio, W., Portugal, A.M., Ramos, L.M., Reyes, M.T., Sallan, M.A., Ulat, V.J., Wang, X., McNally, K.L., Sackville, H.R., McLaren, C.G., 2003. Linking genotype to phenotype: the International Rice Information System (IRIS).Bioinformatics,S1:163–165.

    Google Scholar 

  • Causse, M., Fulton, T.M., Cho, Y.G., Ahn, S.N., Chunwongse, J., Wu, K., Xiao, J., Yu, Z., Ronald, P.C., Harrington, S.B.,et al., 1994. Saturated molecular map of the rice genome based on an interspecific backcross population.Genetics,138:1251–1274.

    Article  CAS  Google Scholar 

  • Chen, M., Presting, G., Barbazuk, W.B., Goicoechea, J.L., Blackmon, B., Fang, G., Kim, H., Frisch, D., Yu, Y., Sun, S., 2002. An integrated physical and genetic map of the rice genome.Plant Cell,14(3):537–545.

    Article  Google Scholar 

  • Choi, D.W., Rodriguez, E.M., Close, T.J., 2002. Barley Cbf3 gene identification, expression pattern, and map location.Plant Physiol,129:1781–1787.

    Article  CAS  Google Scholar 

  • Dey, M.M., Upadhyaya, H.K., 1996. Yield Loss Due to Drought, Cold and Submergence Tolerance.In: Evenson, R.E., Herdt, R.W., Hossain, M. (Eds.), Rice Research in Asia: Progress and Priorities. International Rice Research Institute in Collaboration with CAB International, UK.

    Google Scholar 

  • Feng, Q., Zhang, Y., Hao, P., Wang, S., Fu, G., Huang, Y., Li, Y., Zhu, J., Liu, Y., Hu, X.,et al., 2002. Sequence and analysis of rice chromosome 4.Nature,420:316–320.

    Article  CAS  Google Scholar 

  • Fujimoto, S.Y., Ohta, M., Usui, A., Shinshi, H., Ohme-Takagi, M., 2000. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression.Plant Cell,12:393–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaxiola, R.A., Li, J., Undurraga, S., Dang, L.M., Allen, G.J., Alper, S.L., Fink, G.R., 2001. Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump.Proc Natl Acad Sci USA,98:11444–11449.

    Article  CAS  Google Scholar 

  • Gilmour, S.J., Zarka, D.G., Stockinger, E.J., Salazar, M.P., Houghton, J.M., Thomashow, M.F., 1998. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression.Plant J,16:433–442.

    Article  CAS  Google Scholar 

  • Goff, S.A., Ricke, D., Lan, T.H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H.,et al., 2002. A draft sequence of the rice Genome (Oryzasativa L. ssp.japonica).Science,296:92–100.

    Article  CAS  Google Scholar 

  • Harushima, Y.M., Yano, A., Shomura, M., Sato, T., Shimano, Y., Kuboki, T., Yamamoto, S.Y., Lin, B.A., Antonio, A., Parco, H.,et al., 1998. A High-density rice genetic linkage map with 2275 markers using a single F2 population.Genetics,148:479–494.

    Article  CAS  Google Scholar 

  • Ingram, J., Bartels, D., 1996. The molecular basis of dehydration tolerance in plants.Annu Rev Plant Physiol Plant Mol Biol,47:377–403.

    Article  CAS  Google Scholar 

  • Jennings, P.R., 1964. Plant type as a rice breeding objective.Crop Sci,4:13–15.

    Article  Google Scholar 

  • Kim, J.S., Kim, Y.O., Ryu, H.J., Kwak, Y.S., Lee, J.Y., Kang, H., 2003. Isolation of stress-related genes of rubber particles and latex in fig tree (Ficus carica) and their expressions by abiotic stress or plant hormone treatments.Plant Cell Physiol,44:412–414.

    Article  CAS  Google Scholar 

  • Kovtun, Y., Chiu, W.L., Tena, G., Sheen, J., 2000. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants.Proc Natl Acad Sci USA,97:2940–2945.

    Article  CAS  Google Scholar 

  • Lafitte, H.R., Courtois, B., Arraudeau, M., 2002. Genetic improvement of rice in aerobic systems: progress from yield to genes.Field Crops Res,75:171–190.

    Article  Google Scholar 

  • Lewis, S.E., Searle, S.M.J., Harris, N., Gibson, M., Iyer, V., Ricter, J., Wiel, C., Bayraktaroglu, L., Birney, E., Crosby, M.A.,et al., 2002. Annotation of the Drosophila melanogaster euchromatic genome: a systematic review.Genome Biol,3:1–22.

    Article  Google Scholar 

  • Li, Z.K., Yu, S.B., Lafitte, H.R., Huang, N., Courtois, B., Hittalmani, S., Vijayakumar, C.H.M., Liu, G.F., Wang, G.C., Shashidhar, H.E.,et al., 2003. QTL x environment interactions in rice. I. Heading date and plant height.Theor Appl Genet,108(1):141–153.

    Article  CAS  Google Scholar 

  • Price, A.H., Cairns, J.E., Horton, P., Jones, H.G., Griffiths, H., 2002a. Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses.J Exp Bot,53:989–1004.

    Article  CAS  Google Scholar 

  • Price, A.H., Steele, K.A., Moore, B.J., Jones, R.G.W., 2002b. Upland rice grown in soil-filled chambers and exposed to contrasting water-deficit regimes: II Mapping QTL for root morphology and distribution.Field Crops Res,76:25–43.

    Article  Google Scholar 

  • Price, A.H., Townend, J., Jones, M.P., Audebert, A., Courtois, B., 2002c. Mapping QTLs associated with drought avoidance in upland rice grown in the Philippines and West Africa.Plant Mol Biol,48:683–695.

    Article  CAS  Google Scholar 

  • Sasaki, T., 2001. The Rice Genome Project in Japan.In: Wilson, R.F., Hou, C.T., Hildebrand, D.F. (Eds.), Dealing with Genetically Modified Crops. AOCS Press, Champaign Illinois, p. 102–109.

    Google Scholar 

  • Sasaki, T., Matsumoto, T., Yamamoto, K., Sakata, K., Baba, T., Katayose, Y., Wu, J., Niimura, Y., Cheng, Z., Nagamura, Y.,et al., 2002. The genome sequence and structure of rice chromosome I.Nature,420:312–316.

    Article  CAS  Google Scholar 

  • Schuler, G.D., 1997. Sequence mapping by electronic PCR.Genome Res,7:541–550.

    Article  CAS  Google Scholar 

  • Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T.,et al., 2002. Monitoring the expression pattern of around 7000 Arabidopsisgenes under ABA treatments using a full-length cDNA microarray.Funct Integr Genomics,2:282–291.

    Article  CAS  Google Scholar 

  • Shinozaki, K., Yamaguchi-Shinozaki, K., 1996. Molecular responses to drought and cold stress.Curr Opin Biotech,7:161–167.

    Article  CAS  Google Scholar 

  • Shinozaki, K., Yamaguchi-Shinozaki, K., 1997. Gene expression and signal transduction in water-stress response.Plant Physiol,115:327–334.

    Article  CAS  Google Scholar 

  • Siepel, A., Farmer, A., Tolopko, A., Zhuang, M., Mendes, P., Beavis, W., Sobral, B., 2001. ISYS: a decentralized component-based approach to the integration of heterogeneous bioinformatics resources.Bioinformatics,17:83–94.

    Article  CAS  Google Scholar 

  • Stein, L.D., Mungall, C., Shu, S., Caudy, M., Mangone, M., Day, A., Nickerson, E., Stajich, J.E., Harris, T.W., Arva, A., Lewis, S., 2002. The generic genome browser: a building block for a model organism system database.Genome Res,12:1599–1610.

    Article  CAS  Google Scholar 

  • Temnykh, S., DeClerck, G., Lukashova, A., Lipovich, L., Cartinhour, S., McCouch, S., 2001. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential.Genome Res,11:1441–1452.

    Article  CAS  Google Scholar 

  • Urao, T., Katagiri, T., Mizoguchi, T., Yamaguchi-Shinozaki, K., Hayashida, N., Shinozaki, K., 1994. Two genes that encode Ca2+-dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana.Mol Gen Genet,244:331–340.

    Article  CAS  Google Scholar 

  • Ware, D., Jaiswal, P., Ni, J., Pan, X., Chang, K., Clark, K., Teytelman, L., Schmidt, S., Zhao, W., Cartinhour, S.,et al., 2002. Gramene: a resource for comparative grass genomics.Nucleic Acids Res,30:103–105.

    Article  CAS  Google Scholar 

  • Xiong, L., Zhu, J.K., 2001. Abiotic stress signal transduction in plants: Molecular and genetic perspectives.Physiol Plant,112:152–166.

    Article  CAS  Google Scholar 

  • Xiong, L., Schumaker, K.S., Zhu, J.K., 2002. Cell signaling during cold, drought, and salt stress.The Plant Cell,14 (Suppl):S165–183.

    Article  Google Scholar 

  • Yamaguchi-Shinozaki, K., Kasagu, M., Liu, Q., Nakashima, K., Sakuma, Y., Abe, H., Shinwari, Z.K., Seki, M., Shinozaki, K., 2002. Biological mechanisms of drought stress response.JIRCAS Working Report,23:1–8.

    CAS  Google Scholar 

  • Yu, J., Hu, S., Wang, J., Wong, G.K., Li, S., Liu, B., Deng, Y., Dai, L., Zhou, Y., Zhang, X.,et al., 2002. A draft sequence of the rice genome (Oryza sativa L. ssp.indica).Science,296:79–92.

    Article  CAS  Google Scholar 

  • Zhang, J., Kirkham, M.B., 1994. Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheate species.Plant Cell Physiol,35:758–791.

    Article  Google Scholar 

  • Zhu, J.K., 2002. Salt and drought stress signal transduction in plants.Annu Rev Plant Biol,53:247–273.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Bruskiewich.

Additional information

Project supported partly by the Rockefeller Foundation thesis dissertation training grant and the National Hi-Tech Research and Development Program (863) of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Xs., Zhu, J., Mansueto, L. et al. Identification of candidate genes for drought stress tolerance in rice by the integration of a genetic (QTL) map with the rice genome physical map. J Zheijang Univ Sci B 6, 382–388 (2005). https://doi.org/10.1631/jzus.2005.B0382

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2005.B0382

Key words

CLC number

Navigation