Skip to main content
Log in

Broad-bandwidth and low-loss metamaterials: Theory, design and realization

  • Review
  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

In this paper, we summarize some recent activities in the field of metamaterial research at the National University of Singapore (NUS). Integral equations are applied for electromagnetic modelling of supernatural materials. Some special characteristics of the metamaterials are shown. Moreover, quasi-static Lorentz theory and numerical method (i.e., the method of moments for solving the electric field integral equation) and the transmission line theory are both presented to obtain the effective constitutive relations of metamaterials, respectively. Finally, feasibility of fabricating metamaterials based on analysis of equivalent transmission line model in the microwave spectrum and even higher is also shown and correspondingly some broad-bandwidth and low-loss metamaterial structures are designed and synthesized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Caloz, C., Sanada, A., Itoh, T., 2004. A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth. IEEE Trans. Microwave Theory Tech., 52(3):980–992. [doi:10.1109/TMTT.2004.823579]

    Article  Google Scholar 

  • Chen, H.S., Ran, L.X., Huangfu, J.T., Zhang, X.M., Chen, K.S., Grzegorczyk, T.M., Kong, J.A., 2003. T-junction waveguide experiment to characterize left-handed properties of metamaterials. Journal of Applied Physics, 94(6):3712–3716. [doi:10.1063/1.1603344]

    Article  Google Scholar 

  • Collin, R.E., 1991. Field Theory of Guided Waves. IEEE Press, New York, Chapter 12.

    MATH  Google Scholar 

  • Eleftheriades, G.V., Iyer, A.K., Kremer, P.C., 2002. Planar negative refractive index media using periodically L-C loaded transmission lines. IEEE Trans. Microwave Theory and Techniques, 50(12):2702–2712. [doi:10.1109/TMTT.2002.805197]

    Article  Google Scholar 

  • Engheta, N., 2003. Metamaterials with negative permittivity and permeability: background, salient features, and new trends. Microwave Symposium Digest, 2003 IEEE MTT-S International, 1:187–190. [doi:10.1109/MWSYM.2003.1210912]

    Article  Google Scholar 

  • Falcone, F., Martin, F., Bonache, J., Marques, R., Lopetegi, T., Sorolla, M., 2004. Left-handed coplanar waveguide band pass filters based on bi-layer split ring resonators. IEEE Microwave and Wireless Components Letters, 14(1):10–12. [doi:10.1109/LMWC.2003.821512]

    Article  Google Scholar 

  • Garg, R., Bhartia, P., Bahl, I., Ittipiboon, A., 2001. Microstrip Antenna Design Handbook. Artech House, Boston and London.

    Google Scholar 

  • Gay-Balmaz, P., Martin, O.J.F., 2001. Efficient isotropic magnetic resonators. Applied Physics Letters, 81(5):939–941. [doi:10.1063/1.1496507]

    Article  Google Scholar 

  • Gay-Balmaz, P., Martin, O.J.F., 2002. Electromagnetic resonances in individual and coupled split ring resonators. Journal of Applied Physics, 92(5):2929–2936. [doi:10.1063/1.1497452]

    Article  Google Scholar 

  • Grbic, A., Eleftheriades, G.V., 2003. Dispersion analysis of a microstrip-based negative refractive index periodic structure. IEEE Microwave and Wireless Components Letters, 13(4):155–157. [doi:10.1109/LMWC.2003.811042]

    Article  Google Scholar 

  • Gupta, K.C., Garg, R., Bahl, I., Bhartia, P., 1996. Microstrip Lines and Slotlines. 2nd Ed., Artech House, Boston.

    Google Scholar 

  • Ishimaru, A., Lee, S.W., Kuga, Y., Jandhyala, V., 2003. Generalized constitutive relations for metamaterials based on the Quasi-static Lorentz Theory. IEEE Trans. Antennas Propagation, 51(10):2550–2557. [doi:10.1109/TAP.2003.817565]

    Article  Google Scholar 

  • Kong, J.A., 2002. Theorems of bianisotropic media. Proceedings of the IEEE, 60(9):1036–1046.

    Article  MathSciNet  Google Scholar 

  • Li, L.W., Zhang, H.X., Chen, Z.N., 2003. Representation of Constitutive Relation Tensors of Metamaterials: An Approximation for FFB Media. Proc. 2003 Progress in Electromagnetics Research (PIERS’03), Waikiki Sheraton, Hawaii, USA, p.617.

  • Moss, C.D., Grzegorczyk, T.M., Zhang, Y., Kong, J.A., 2002. Numerical studies of left handed metamaterials. Progress in Electromagnetics Research, 35:315–334.

    Article  Google Scholar 

  • Oliner, A.A., 2003. A planar negative-refractive-index medium without resonant elements. Microwave Symposium Digest, 2003 IEEE MTT-S International, 1:191–194. [doi:10.1109/MWSYM.2003.1210913]

    Article  Google Scholar 

  • Pendry, J.B., 2000. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85(18):3966–3969. [doi:10.1103/Phys-RevLett.85.3966]

    Article  Google Scholar 

  • Pendry, J.B., Holden, A.J., Stewart, W.J., Youngs, I., 1996. Extremely low frequency plasmons in metallic Mesostructures. Phys. Rev. Lett., 76(25):4773–4776. [doi:10.1103/PhysRevLett.76.4773]

    Article  Google Scholar 

  • Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J., 1999. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech., 47 (11):2075–2084. [doi:10.1109/22.798002]

    Article  Google Scholar 

  • Sanada, A., Caloz, C., Itoh, T., 2004. Characteristics of the composite right/left-handed transmission lines. IEEE Microwave and Wireless Components Letters, 14(2):68–70. [doi:10.1109/LMWC.2003.822563]

    Article  Google Scholar 

  • Shelby, R.A., Smith, D.R., Nemat-Nasser, S.C., Schultz, S., 2001. Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Applied Physics Letters, 78(4):489–491. [doi:10.1063/1.1343489]

    Article  Google Scholar 

  • Smith, D.R., Schurig, D., 2003. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Physical Review Letters, 90(7):077405. [doi:10.1103/PhysRevLett.90.077405]

    Article  Google Scholar 

  • Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S., 2000. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 84(18):4184–4187. [doi:10.1103/Phys-RevLett.84.4184]

    Article  Google Scholar 

  • Song, J.M., Chew, W.C., 1995. Moment method solutions using parametric geometry. Journal of Electromagnetic Waves and Applications, 9(1/2):71–83.

    Article  Google Scholar 

  • Veselago, V.G., 1968. The electrodynamics of substances with simultaneously negative values of ɛ and μ. Soviet Physics Uspekhi, 10(4):509–514. [doi:10.1070/PU1968v010n04ABEH003699]

    Article  Google Scholar 

  • Weiland, T., Schuhmann, R., Greegor, R.B., Parazzoli, C.G., Vetter, A.M., Smith, D.R., Vier, D.C., Schultz, S., 2001. Ab initio numerical simulation of left-handed metamaterials: comparison of calculations and experiments. Journal of Applied Physics, 90(10):5419–5424. [doi:10.1063/1.1410881]

    Article  Google Scholar 

  • Xu, W., Li, L.W., Wu, Q., 2004a. Design of Left-handed Materials with Broad Bandwidth and Low Loss Using Double Resonant Frequency Structure. Pcn2004 IEEE AP-S International Symposium, Monterey, CA.

  • Xu, W., Yao, H.Y., Li, L.W., 2004b. Analysis of a novel metamaterial using TLM. 2004 International Symposium on Antennas and Propagation, 2C3:453–456.

    Google Scholar 

  • Xu, W., Li, L.W., Yao, H.Y., Yeo, T.S., Wu, Q., 2005a. Extraction of constitutive relation tensor parameters of SRR structures using transmission line theory. Journal of Electromagnetic Waves and Applications (in press).

  • Xu, W., Li, L.W., Yao, H.Y., Yeo, T.S., Wu, Q., 2005b. Left-handed material effects on waves modes and resonant frequencies: filled waveguide structures and substrate-loaded patch antennas. Journal of Electromagnetic Waves and Applications (in press).

  • Yao, H.Y., Li, L.W., Wu, Q., Kong, J.A., 2004. Macroscopic Performance Analysis of Metamaterials Synthesized from Microscopic 2-D Isotropic Cross Split-Ring Resonator Array. EMW Publishing, Cambridge, Boston, 51:197–217.

    Google Scholar 

  • Yao, H.Y., Xu, W., Li, L.W., Wu, Q., Yeo, T.S., 2005. Propagation property analysis of metamaterial constructed by conductive SRRs and wires using the MGS-based algorithm. IEEE Trans. Microwave Theory Tech., 53(4):1469–1476. [doi:10.1109/TMTT.2005.845210]

    Article  Google Scholar 

  • Ziolkowski, R.W., 2003. Design, fabrication, and testing of double negative metamaterials. IEEE Trans. Antennas Propagation, 51(7):1516–1529. [doi:10.1109/TAP.2003.813622]

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Lw., Yao, Hy., Wu, Q. et al. Broad-bandwidth and low-loss metamaterials: Theory, design and realization. J. Zhejiang Univ. - Sci. A 7, 5–23 (2006). https://doi.org/10.1631/jzus.2006.A0005

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2006.A0005

Key words

Document code

CLC number

Navigation