Skip to main content
Log in

Numerical model and multi-objective optimization analysis of vehicle vibration

基于数值算法的车辆动力学模型及数值求解方法精度的对比研究

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

It is crucial to conduct a study of vehicle ride comfort using a suitable physical model, and a precise and effective problem-solving method is necessary to describe possible engineering problems to obtain the best analysis of vehicle vibration based on the numerical model. This study establishes different types of vehicle models with different degrees of freedom (DOFs) that use different types of numerical methods. It is shown that results calculated using the Hamming and Runge-Kutta methods are nearly the same when the system has a small number of DOFs. However, when the number is larger, the Hamming method is more stable than other methods. The Hamming method is multi-step, with four orders of precision. The research results show that this method can solve the vehicle vibration problem. Orthogonal experiments and multi-objective optimization are introduced to analyze and optimize the vibration of the vehicle, and the effects of the parameters on the dynamic characteristics are investigated. The solution F 1 (vertical acceleration root mean square of the vehicle) reduces by 0.0352 m/s2, which is an improvement of 7.22%, and the solution F 2 (dynamic load coefficient of the tire) reduces by 0.0225, which is an improvement of 6.82% after optimization. The study provides guidance for the analysis of vehicle ride comfort.

中文概要

目 的

通过采用不同数值方法求解不同的车辆动力学模 型, 为车辆动力学模型研究提供参考; 结合正交 试验和多目标优化算法来分析各个参数对车辆 性能的影响权重, 采用多目标优化算法进行车辆 动力学多目标优化分析, 为车辆的设计提供参考 依据。

创新点

研究不同数值方法的求解精度, 为车辆动力学求 解方法提供新途径; 采用正交试验设计研究车辆 各参数的影响权重, 为车辆设计提供参考; 采用 多目标优化算法设计车辆, 能兼顾车辆多个方面 的性能。

方 法

采用不同动力学求解算法、正交试验设计和多目标优化分析方法。

结 论

1. 基于不同数值求解算法的研究表明, Hamming 法要优于Newmark 法和有限差分法, 四阶 Hamming 法的精度不如龙格库塔法; 2. 正交试验 可得到各参数对车辆动力学的影响权重, 但忽略 了参数间的交互效应; 3. 经过多目标优化设计, 衡量车辆振动性能的两个指标分别减少了7.22% 和6.82%。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bae, D.S., Lee, J.K., Cho, H.J., et al., 2000. An explicit integration method for realtime simulation of multibody vehicle models. Computer Methods in Applied Mechanics and Engineering, 187(1-2):337–350. http://dx.doi.org/10.1016/S0045-7825(99)00138-3

    Article  MATH  Google Scholar 

  • Baumal, A., McPhee, J., Calamai, P., 1998. Application of genetic algorithms to the design optimization of an active vehicle suspension system. Computer Methods in Applied Mechanics and Engineering, 163(1-4):87–94. http://dx.doi.org/10.1016/S0045-7825(98)00004-8

    Article  MATH  Google Scholar 

  • Campbell, C., 1981. Automotive Suspensions. Chapman Hall, London, UK.

    Book  Google Scholar 

  • Ekoru, J.E.D., Pedro, J.O., 2013. Proportional-integralderivative control of nonlinear half-car electro-hydraulic suspension systems. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(6): 401–416. http://dx.doi.org/10.1631/jzus.A1200161

    Article  Google Scholar 

  • Gündogdu, O., 2007. Optimal seat and suspension design for a quarter car with driver model using genetic algorithms. International Journal of Industrial Ergonomics, 37(4): 327–332. http://dx.doi.org/10.1016/j.ergon.2006.11.005

    Article  Google Scholar 

  • Gupta, T.C., 2007. Identification and experimental validation of damping ratios of different human body segments through anthropometric vibratory model in standing posture. Journal of Biomechanical Engineering, 129(4): 566–574. http://dx.doi.org/10.1115/1.2720917

    Article  Google Scholar 

  • He, Z., Sun, Y., Zhang, G., 2015. Tribilogical performances of connecting rod and by using orthogonal experiment, regression method and response surface methodology. Applied Soft Computing, 29: 436–449. http://dx.doi.org/10.1016/j.asoc.2015.01.009

    Article  Google Scholar 

  • Hegazy, S., Rahnejat, H., Hussain, K., 1999. Multi-body dynamics in full-vehicle handling analysis. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 213(1): 19–31. http://dx.doi.org/10.1243/1464419991544027

    Google Scholar 

  • Ikenaga, S., Lewis, F.L., Campos, J., et al., 2000. Active suspension control of ground vehicle based on a full-vehicle model. American Control Conference, 6: 4019–4024.

    Google Scholar 

  • Jamali, A., Shams, H., Fasihozaman, M., 2014. Pareto multiobjective optimum design of vehicle-suspension system under random road excitations. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multibody Dynamics, 228(3): 282–293. http://dx.doi.org/10.1177/1464419314531757

    Google Scholar 

  • Kadir, Z.A., Hudha, K., Ahmad, F., et al., 2012. Verification of 14DOF full vehicle model based on steering wheel input. Applied Mechanics and Materials, 165: 109–113. http://dx.doi.org/10.4028/www.scientific.net/amm.165.109

    Article  Google Scholar 

  • Mirzaei, M., Hassannejad, R., 2007. Application of genetic algorithms to optimum design of elasto-damping elements of a half-car model under random road excitations. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 221(4): 515–526. http://dx.doi.org/10.1243/14644193JMBD101

    Article  Google Scholar 

  • Nasir, M.Z.M., Hudha, K., Amir, M.Z., et al., 2012. Modelling, simulation and validation of 9 DOF vehicles model for automatic steering system. Applied Mechanics and Materials, 165: 192–196. http://dx.doi.org/10.4028/www.scientific.net/amm.165.192

    Article  Google Scholar 

  • Nigam, S.P., Malik, M., 1987. A study on a vibratory model of a human body. Journal of Biomechanical Engineering, 109(2): 148–153. http://dx.doi.org/10.1115/1.3138657

    Article  Google Scholar 

  • Rao, S.S., 1996. Engineering Optimization. John Wiley & Sons, New York, USA.

    Google Scholar 

  • Reddy, P.S., Ramakrishna, A., Ramji, K., 2015. Study of the dynamic behaviour of a human driver coupled with a vehicle. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 229(2): 226–234. http://dx.doi.org/10.1177/0954407014537642

    Google Scholar 

  • Schmitke, C., Morency, K., McPhee, J., 2008. Using graph theory and symbolic computing to generate efficient models for multi-body vehicle dynamics. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 222(4): 339–352. http://dx.doi.org/10.1243/14644193JMBD160

    Google Scholar 

  • Soleymani, M., Montazeri-Gh, M., Amiryan, R., 2012. Adaptive fuzzy controller for vehicle active suspension system based on traffic conditions. Scientia Iranica, 19(3): 443–453. http://dx.doi.org/10.1016/j.scient.2012.03.002

    Article  Google Scholar 

  • Srinivas, N., Deb, K., 1994. Multiobjective function optimization using nondominated sorting genetic algorithms. Evolutionary Computation, 2(3): 221–248. http://dx.doi.org/10.1162/evco.1994.2.3.221

    Article  Google Scholar 

  • Sulaiman, S., Samin, P.M., Jamaluddin, H., et al., 2012. Modeling and validation of 7-DOF ride model for heavy vehicle. International Conference on Automotive, Mechanical and Materials Engineering, p.108–112.

    Google Scholar 

  • Taghirad, H., Esmailzadeh, E., 1998. Automobile passenger comfort assured through LQG/LQR active suspension. Journal of Vibration and Control, 4(5): 603–618. http://dx.doi.org/10.1177/107754639800400504

    Article  Google Scholar 

  • Tamboli, J.A., Joshi, S.G., 1999. Optimum design of passive suspension system of a vehicle subjected to actual random road excitations. Journal of Sound and Vibration, 219(2): 193–205. http://dx.doi.org/10.1006/jsvi.1998.1882

    Article  Google Scholar 

  • Thite, A.N., Banvidi, S., Ibicek, T., et al., 2011. Suspension parameter estimation in the frequency domain using a matrix inversion approach. Vehicle System Dynamics, 49(12): 1803–1822. http://dx.doi.org/10.1080/00423114.2010.544319

    Article  Google Scholar 

  • Vaddi, P.K.R., Kumar, C.S., 2014. A non-linear vehicle dynamics model for accurate representation of suspension kinematics. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229(6): 1002–1014. http://dx.doi.org/10.1177/0954406214542840

    Google Scholar 

  • von Chappuis, H., Mavros, G., King, P.D., et al., 2013. Prediction of impulsive vehicle tyre-suspension response to abusive drive-over-kerb manoeuvres. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 227(2): 133–149. http://dx.doi.org/10.1177/1464419312469756

    Google Scholar 

  • Yu, F., Lin, Y., 2005. Vehicle System Dynamics. Machinery Industry Press, Beijing, China (in Chinese).

    Google Scholar 

  • Yuen, T.J., Foong, S.M., Ramli, R., 2014. Optimized suspension kinematic profiles for handling performance using 10-degree-of-freedom vehicle model. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 228(1): 82–99. http://dx.doi.org/10.1177/1464419313516436

    Google Scholar 

  • Zong, C., Song, P., Hu, D., 2011. Estimation of vehicle states and tire-road friction using parallel extended Kalman filtering. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 12(6): 446–452. http://dx.doi.org/10.1631/jzus.A1100056

    Article  Google Scholar 

  • Zuo, L., Nayfeh, S.A., 2003. Structured H2 optimization of vehicle suspensions based on multi-wheel models. Vehicle System Dynamics, 40(5): 351–371. http://dx.doi.org/10.1076/vesd.40.5.351.17914

    Article  Google Scholar 

  • Zuo, L., Zhang, P.S., 2013. Energy harvesting, ride comfort, and road handling of regenerative vehicle suspensions. Journal of Vibration and Acoustics, 135(1): 011002. http://dx.doi.org/10.1115/1.4007562

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-hong Zhang.

Additional information

Project supported by the National High-Tech R&D Program (863 Program) of China (No. 2014AA0415011)

ORCID: Guo Peng, http://orcid.org/0000-0002-6454-2381

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, P., Zhang, Jh. Numerical model and multi-objective optimization analysis of vehicle vibration. J. Zhejiang Univ. Sci. A 18, 393–412 (2017). https://doi.org/10.1631/jzus.A1600124

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1600124

Keywords

关键词

CLC number

Navigation