Skip to main content
Log in

Changes in bacterial community of anthracene bioremediation in municipal solid waste composting soil

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are common contaminants in a municipal solid waste (MSW) composting site. Knowledge of changes in microbial structure is useful to identify particular PAH degraders. However, the microbial community in the MSW composting soil and its change associated with prolonged exposure to PAHs and subsequent biodegradation remain largely unknown. In this study, anthracene was selected as a model compound. The bacterial community structure was investigated using terminal restriction fragment length polymorphism (TRFLP) and 16S rRNA gene clone library analysis. The two bimolecular tools revealed a large shift of bacterial community structure after anthracene amendment and subsequent biodegradation. Genera Methylophilus, Mesorhizobium, and Terrimonas had potential links to anthracene biodegradation, suggesting a consortium playing an active role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abed, R.M.M., Safi, N.M.D., Köster, J., de Beer, D., El-Nahhal, Y., Rullkötter, J., Garcia-Pichel, F., 2002. Microbial diversity of a heavily polluted microbial mat and its community changes following degradation of petroleum compounds. Appl. Environ. Microbiol., 68(4): 1674–1683. [doi:10.1128/AEM.68.4.1674-1683.2002]

    Article  PubMed  CAS  Google Scholar 

  • Baun, A., Ledin, A., Reitzel, L.A., Bjerg, P.L., Christensen, T.H., 2004. Xenobiotic organic compounds in leachates from ten Danish MSW landfills-chemical analysis and toxicity tests. Water Res., 38(18):3845–3858. [doi:10. 1016/j.watres.2004.07.006]

    Article  PubMed  CAS  Google Scholar 

  • Cébron, A., Beguiristain, T., Faure, P., Norini, M.P., Masfaraud, J.F., Leyval, C., 2009. Influence of vegetation on the in situ bacterial community and polycyclic aromatic hydrocarbon degraders in aged PAH-contaminated or thermal-desorption-treated soil. Appl. Environ. Microbiol., 75(19):6322–6330. [doi:10.1128/AEM.02862-08]

    Article  PubMed  Google Scholar 

  • Chang, Y.T., Lee, J.F., Chao, H.P., 2007. Variability of communities and physiological characteristics between free-living bacteria and attached bacteria during the PAH biodegradation in a soil/water system. Eur. J. Soil. Biol., 43(5–6):283–296. [doi:10.1016/j.ejsobi.2007.02.012]

    Article  CAS  Google Scholar 

  • Chen, W.M., Zhu, W.F., Bontemps, C., Young, J.P.W., Wei, G.H., 2010. Mesorhizobium alhagi sp. nov. isolated from wild Alhagi sparsifolia in north-western China. Int. J. Syst. Evol. Microbiol., 60(4):958–962. [doi:10.1099/ijs.0.014043-0]

    Article  PubMed  CAS  Google Scholar 

  • Clarke, K.R., Warwick, R.M., 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd Ed. PRIMER-E, Plymouth Marine Laboratory, Plymouth, UK, p.172.

    Google Scholar 

  • Cunliffe, M., Kertesz, M.A., 2006. Effect of Sphingobiumyanoikuyae B1 inoculation on bacterial community dynamics and polycyclic aromatic hydrocarbon degradation in aged and freshly PAH-contaminated soils. Environ. Pollut., 144(1):228–237. [doi:10.1016/j.envpol.2005.12.026]

    Article  PubMed  CAS  Google Scholar 

  • Cupples, A.M., Sims, G.K., 2007. Identification of in situ 2,4-dichlorophenoxyacetic acid-degrading soil microorganisms using DNA-stable isotope probing. Soil Biol. Biochem., 39(1):232–238. [doi:10.1016/j.soilbio.2006.07.011]

    Article  CAS  Google Scholar 

  • Doronina, N.V., Trotsenko, Y.A., 1994. Methylophilus leisingerii sp. nov., a new species of restricted facultatively methylotrophic bacteria. Mikrobiologiya, 63(3):529–536.

    CAS  Google Scholar 

  • Dunbar, J.M., Ticknor, L.O., Kuske, C.R., 2000. Assessment of microbial diversity in four southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Appl. Environ. Microbiol., 66(7):2943–2950. [doi:10.1128/AEM.66.7.2943-2950.2000]

    Article  PubMed  CAS  Google Scholar 

  • Dunbar, J.M., Ticknor, L.O., Kuske, C.R., 2001. Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities. Appl. Environ. Microbiol., 67(1):190–197. [doi:10.1128/AEM.67.1.190-197.2001]

    Article  PubMed  CAS  Google Scholar 

  • Falk, M.W., Song, K.G., Matiasek, M.G., Wuertz, S., 2009. Microbial community dynamics in replicate membrane bioreactors—natural reproducible fluctuations. Water Res., 43(3):842–852. [doi:10.1016/j.watres.2008.11.021]

    Article  PubMed  CAS  Google Scholar 

  • Feng, Y.S., Lee, C.M., 2009. The potential of the acetonitrile biodegradation by Mesorhizobium sp. F28. J. Hazard. Mater., 164(2–3):646–650. [doi:10.1016/j.jhazmat.2008. 08.039]

    Article  PubMed  CAS  Google Scholar 

  • Feng, Y.S., Lee, C.M., Wang, C.C., 2008. Methods for increasing nitrile biotransformation into amides using Mesorhizobium sp. Appl. Biochem. Microbiol., 44(3): 271–275. [doi:10.1134/S0003683808030071]

    Article  CAS  Google Scholar 

  • Gandolfi, I., Sicolo, M., Franzetti, A., Fontanarosa, E., Santagostino, A., Bestetti, G., 2010. Influence of compost amendment on microbial community and ecotoxicity of hydrocarbon-contaminated soils. Bioresource Technol., 101(2):568–575. [doi:10.1016/j.biortech.2009.08.095]

    Article  CAS  Google Scholar 

  • Ghosh, W., Roy, P., 2006. Mesorhizobium thiogangeticum sp. nov. a novel sulfur-oxidizing chemolithoautotroph from rhizosphere soil of an Indian tropical leguminous plant. Int. J. Syst. Evol. Microbiol., 56(1):91–97. [doi:10.1099/ijs.0.63967-0]

    Article  PubMed  CAS  Google Scholar 

  • Goyal, A.K., Zylstra, G.J., 1996. Molecular cloning of novel genes for polycyclic hydrocarbon degradation from Comamonastestosteroni GZ39. Appl. Environ. Microbiol., 62(1):230–236.

    PubMed  CAS  Google Scholar 

  • Grant, R.J., Muckian, L.M., Clipson, N.J.W., Doyle, E.M., 2007. Microbial community changes during the bioremediation of creosote-contaminated soil. Lett. Appl. Microbiol., 44(3):293–300. [doi:10.1111/j.1472-765X.2006.02066.x]

    Article  PubMed  CAS  Google Scholar 

  • Guo, C., Sun, J.B., Harsh, J.B., Ogram, A., 1997. Hybridization analysis of microbial DNA from fuel oil-contaminated and noncontaminated soil. Microb. Ecol., 34(3):178–187. [doi:10.1007/s002489900047]

    Article  PubMed  CAS  Google Scholar 

  • Han, X.J., Li, L.Q., Pan, G.X., Hu, Z.L., 2009. Pollution characteristics of polycyclic aromatic hydrocarbons in soils from farmland around the domestic refuse dump. Ecol. Environ. Sci., 18(4):1251–1255 (in Chinese).

    Google Scholar 

  • Huang, A.H., Teplitski, M., Rathinasabapathi, B., Ma, L.N., 2010. Characterization of arsenic-resistant bacteria from the rhizosphere of arsenic hyperaccumulator Pterisvittata. Can. J. Microbiol., 56(3):236–246. [doi:10.1139/W10-005]

    Article  PubMed  CAS  Google Scholar 

  • Huang, Y., Zhang, S.Y., Lv, M.J., Xie, S.G., 2010. Biosorption characteristics of ectomycorrhizal fungal mycelium for anthracene. Biomed. Environ. Sci., 23(5):378–383. [doi: 10.1016/S0895-3988(10)60079-7]

    Article  PubMed  CAS  Google Scholar 

  • Hutalle-Schmelzer, K.M.L., Zwirnmann, E., Kruger, A., Grossart, H.P., 2010. Enrichment and cultivation of pelagic bacteria from a humic lake using phenol and humic matter additions. FEMS Microbiol. Ecol., 72(1):58–73. [doi:10.1111/j.1574-6941.2009.00831.x]

    Article  PubMed  CAS  Google Scholar 

  • Jacques, R.J.S., Santos, E.C., Bento, F.M., Peralba, M., Selbach, P.A., Flá, S., Camargo, F.A.O., 2005. Anthracene biodegradation by Pseudomonas sp. isolated from a petrochemical sludge landfarming site. Int. Biodeter. Biodegr., 56(3):143–150. [doi:10.1016/j.ibiod.2005.06.005]

    Article  CAS  Google Scholar 

  • Jenkins, O., Byrom, D., Jones, D., 1987. Methylophilus: a new genus of methanol-utilizing bacteria. Int. J. Syst. Bacteriol., 37(4):446–448. [doi:10.1099/00207713-37-4-446]

    Article  Google Scholar 

  • Juhasz, A.L., Britz, M.L., Stanley, G.A., 1997. Degradation of fluoranthene, pyrene, benz[a]anthracene and dibenz[a,h] anthracene by Burkholderia cepacia. J. Appl. Microbiol., 83(2):189–198. [doi:10.1046/j.1365-2672.1997.00220.x]

    Article  CAS  Google Scholar 

  • Krivobok, S., Miriouchkine, E., Seigle-Murandi, F., Benoit-Guyod, J.L., 1998. Biodegradation of anthracene by soil fungi. Chemosphere, 37(3):523–530. [doi:10.1016/S00 45-6535(98)00067-8]

    Article  PubMed  CAS  Google Scholar 

  • Large, P.J., Haywood, G.W., 1981. Methylophilus methylotrophus grows on methylated amines. FEMS Microbiol. Lett., 11(2–3):207–209. [doi:10.1111/j.1574-6968.1981. tb06964.x]

    Article  CAS  Google Scholar 

  • Lin, D.X., Chen, W.F., Wang, F.Q., Hu, D., Wang, E.T., Sui, X.H., Chen, W.X., 2009. Rhizobium mesosinicum sp. nov. isolated from root nodules of three different legumes. Int. J. Syst. Evol. Microbiol., 59(8):1919–1923. [doi:10. 1099/ijs.0.006387-0]

    Article  PubMed  Google Scholar 

  • Liu, H.Z., Yan, J.P., Wang, Q., Karlson, U., Zou, G., Yuan, Z.M., 2009. Biodegradation of methyl tert-butyl ether by enriched bacterial culture. Curr. Microbiol., 59(1):30–34. [doi:10.1007/s00284-009-9391-1]

    Article  PubMed  CAS  Google Scholar 

  • Luo, C.L., Xie, S.G., Sun, W.M., Li, X.D., Cupples, A.M., 2009. Identification of a novel toluene-degrading bacterium from the candidate phylum TM7, as determined by DNA stable isotope probing. Appl. Environ. Microbiol., 75(13):4644–4647. [doi:10.1128/AEM. 00283-09]

    Article  PubMed  CAS  Google Scholar 

  • Luo, Y.L., 2008. Study on the Degradation Characteristics and Pathway of PAH-Degrading Bacteria. PhD Thesis, Xiamen University, China (in Chinese).

    Google Scholar 

  • MacNaughton, S.J., Stephen, J.R., Venosa, A.D., Davis, G.A., Chang, Y.J., White, D.C., 1999. Microbial population changes during bioremediation of an experimental oil spill. Appl. Environ. Microbiol., 65(8):3566–3574.

    PubMed  CAS  Google Scholar 

  • Mills, D.K., Fitzgeralda, K., Litchfielda, C.D., Gillevetb, P.M., 2003. A comparison of DNA profiling techniques for monitoring nutrient impact on microbial community composition during bioremediation of petroleum-contaminated soils. J. Microbiol. Methods, 54(1):57–74. [doi:10.1016/S0167-7012(03)00007-1]

    Article  PubMed  CAS  Google Scholar 

  • Mu, D.Y., Scow, K.M., 1994. Effect of trichloroethylene (TCE) and toluene concentrations on TCE and toluene biodegradation and the population density of TCE and toluene degraders in soil. Appl. Environ. Microbiol., 60(7): 2661–2665.

    PubMed  CAS  Google Scholar 

  • Muckian, L.M., Grant, R.J., Clipson, N.J.W., Doyle, E.M., 2009. Bacterial community dynamics during bioremediation of phenanthrene- and fluoranthene-amended soil. Int. Biodeter. Biodegr., 63(1):52–56. [doi:10.1016/j.ibiod. 2008.04.005]

    Article  CAS  Google Scholar 

  • Müncnerová, D., Augustin, J., 1994. Fungal metabolism and detoxification of polycyclic aromatic hydrocarbons: a review. Bioresource Technol., 48(2):97–106. [doi:10. 1016/0960-8524(94)90195-3]

    Article  Google Scholar 

  • Nikolausz, M., Nijenhuis, I., Ziller, K., Richnow, H.H., Kasner, M., 2006. Stable carbon isotope fractionation during degradation of dichloromethane by methylotrophic bacteria. Environ. Microbiol., 8(1):156–164. [doi:10.1111/j.1462-2920.2005.00878.x]

    Article  PubMed  CAS  Google Scholar 

  • Osborn, R.K., Haydock, P.P.J., Edwards, S.G., 2010. Isolation and identification of oxamyl-degrading bacteria from UK agricultural soils. Soil Biol. Biochem., 42(6):998–1000. [doi:10.1016/j.soilbio.2010.01.016]

    Article  CAS  Google Scholar 

  • Pinyakong, O., Habe, H., Supaka, N., Pinpanichkarn, P., Juntongjin, K., Yoshida, T., Furihata, K., Nojiri, H., Yamane, H., Omori, T., 2000. Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp. strain P2. FEMS Microbiol. Lett., 191(1):115–121. [doi:10.1111/j.1574-6968.2000.tb09327.x]

    Article  PubMed  CAS  Google Scholar 

  • Pinyakong, O., Habe, H., Omori, T., 2003. The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs). J. Gen. Appl. Microbiol., 49(1):l–19. [doi:10.2323/jgam.49.1]

    Article  Google Scholar 

  • Piskonen, R., Nyyssönen, M., Rajamäki, T., Itävaara, M., 2005. Monitoring of accelerated naphthalene biodegradation in a bioaugmented soil slurry. Biodegradation, 16(2): 127–134. [doi:10.1007/s10532-004-4893-9]

    Article  PubMed  CAS  Google Scholar 

  • Rees, G.N., Baldwin, D.S., Watson, G.O., Perryman, S., Nielsen, D.L., 2004. Ordination and significance testing of microbial community composition derived from terminal restriction fragment length polymorphisms: application of multivariate statistics. Antonie van Leeuwenhoek, 86(4):339–347. [doi:10.1007/s10482-005-0498-5]

    Article  PubMed  Google Scholar 

  • Röling, W.F.M., van Breukelen, B.M., Braster, M., Goeltom, M.T., Groen, J., van Verseveld, H.W., 2000. Analysis of microbial communities in a landfill leachate polluted aquifer using a new method for anaerobic physiological profiling and 16S rDNA based fingerprinting. Microb. Ecol., 40(3):177–188. [doi:10.1007/s002480000033]

    PubMed  Google Scholar 

  • Röling, W.F.M., van Breukelen, B.M., Braster, M., Lin, B., van Verseveld, H.W., 2001. Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer. Appl. Environ. Microbiol., 67(10):4619–4629. [doi:10.1128/AEM.67.10.4619-4629.2001]

    Article  PubMed  Google Scholar 

  • Santos, E.C., Jacques, R.J.S., Bento, F.M., do Carmo, R., Peralba, M., Selbach, P.A., Flá, S., Camargo, F.A.O., 2008. Anthracene biodegradation and surface activity by an iron-stimulated Pseudomonas sp. Bioresource Technol., 99(7):2644–2649. [doi:10.1016/j.biortech.2007.04.050]

    Article  CAS  Google Scholar 

  • Singh, B.K., Munro, S., Reid, E., Ord, B., Potts, J.M., Paterson, E., Millard, P., 2006. Investigating microbial community structure in soils by physiological biochemical and molecular fingerprinting methods. Eur. J. Soil Sci., 57(1):72–82. [doi:10.1111/j.1365-2389.2005.00781.x]

    Article  CAS  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4, molecular evolutionary genetics analysis, MEGA software version 4.0. Mol. Biol. Evol., 24(8):1596–1599. [doi:10.1093/molbev/msm092]

    Article  PubMed  CAS  Google Scholar 

  • Teng, Y., Luo, Y.M., Sun, M.M., Liu, Z.J., Li, Z.G., Christie, P., 2010. Effect of bioaugmentation by Paracoccus sp. strain HPD-2 on the soil microbial community and removal of polycyclic aromatic hydrocarbons from an aged contaminated soil. Bioresource Technol., 101(10):3437–3443. [doi:10.1016/j.biortech.2009.12.088]

    Article  CAS  Google Scholar 

  • Tian, Y.J., Yang, H., Wu, X.J., Li, D.T., 2005. Molecular analysis of microbial community in a groundwater sample polluted by landfill leachate and seawater. J. Zhejiang Univ.-Sci. B, 6(3):165–170. [doi:10.1631/jzus.2005.B0165]

    Article  PubMed  Google Scholar 

  • Uhlik, O., Jecna, K., Mackova, M., Vlcek, C., Hroudova, M., Demnerova, K., Paces, V., Macek, T., 2009. Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing. Appl. Environ. Microbiol., 75(20):6471–6477. [doi:10.1128/AEM.00466-09]

    Article  PubMed  CAS  Google Scholar 

  • Vinas, M., Sabate, J., Espuny, M.J., Solanas, A.M., 2005. Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl. Environ. Microbiol., 71(11):7008–7018. [doi:10.1128/AEM.71.11.7008-7018.2005]

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q., Garrity, G.M., Tiedje, J.M., Cole, J.R., 2007. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol., 73(16):5261–5267. [doi:10.1128/AEM.00062-07]

    Article  PubMed  CAS  Google Scholar 

  • Wani, P.A., Zaidi, A., Khan, M.S., 2009. Chromium reducing and plant growth promoting potential of Mesorhizobium species under chromium stress. Bioremediation J., 13(3):121–129. [doi:10.1080/10889860903124289]

    Article  CAS  Google Scholar 

  • Xu, Y.P., Zhou, Y.Q., Wang, D.H., Chen, S.H., Liu, J.X., Wang, Z.J., 2008. Occurrence and removal of organic micropollutants in the treatment of landfill leachate by combined anaerobic-membrane bioreactor technology. J. Environ. Sci., 20(11):1281–1287. [doi:10.1016/S1001-0742(08)62222-6]

    Article  CAS  Google Scholar 

  • Yousefi Kebria, D., Khodadadi, A., Ganjidoust, H., Badkoubi, A., Amoozegar, M.A., 2009. Isolation and characterization of a novel native Bacillus strain capable of degrading diesel fuel. Int. J. Environ. Sci. Tech., 6(3):435–442.

    Google Scholar 

  • Yu, R., Gan, P., MacKay, A.A., Zhang, S.L., Barth, F., Smets, B.F., 2010. Presence distribution and diversity of iron-oxidizing bacteria at a landfill leachate-impacted groundwater surface water interface. FEMS Microbiol. Ecol., 71(2):260–271. [doi:10.1111/j.1574-6941.2009. 00797.x]

    Article  PubMed  CAS  Google Scholar 

  • Yuan, S.Y., Chang, J.S., Yen, J.H., Chang, B.V., 2001. Biodegradation of phenanthrene in river sediment. Chemosphere, 43(3):273–278. [doi:10.1016/S0045-6535(00)00139-9]

    Article  PubMed  CAS  Google Scholar 

  • Zhang, G.Y., Ling, J.Y., Sun, H.B., Luo, J., Fan, Y.Y., Cui, Z.J., 2009. Isolation and characterization of a newly isolated polycyclic aromatic hydrocarbons-degrading Janibacter anophelis strain JY11. J. Hazard Mater., 172(2/3):580–586. [doi:10.1016/j.jhazmat.2009.07.037]

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S.Y., Wang, Q.F., Xie, S.G., 2011. Microbial community changes in contaminated soils in response to phenanthrene amendment. Int. J. Environ. Sci. Tech., 8(2):321–330.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-guang Xie.

Additional information

Project (No. 50979002) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Sy., Wang, Qf., Wan, R. et al. Changes in bacterial community of anthracene bioremediation in municipal solid waste composting soil. J. Zhejiang Univ. Sci. B 12, 760–768 (2011). https://doi.org/10.1631/jzus.B1000440

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1000440

Key words

CLC number

Navigation