Skip to main content
Log in

Generalized Lebesgue points for Sobolev functions

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

In many recent articles, medians have been used as a replacement of integral averages when the function fails to be locally integrable. A point x in a metric measure space (X, d, μ) is called a generalized Lebesgue point of a measurable function f if the medians of f over the balls B(x, r) converge to f(x) when r converges to 0. We know that almost every point of a measurable, almost everywhere finite function is a generalized Lebesgue point and the same is true for every point of a continuous function. We show that a function fM s,p(X), 0 < s ≤ 1, 0 < p < 1, where X is a doubling metric measure space, has generalized Lebesgue points outside a set of \(\mathcal{H}^h\)-Hausdorff measure zero for a suitable gauge function h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Adams, L. I. Hedberg: Function Spaces and Potential Theory. Grundlehren der Mathematischen Wissenschaften 314, Springer, Berlin, 1996.

    Google Scholar 

  2. J. Björn, J. Onninen: Orlicz capacities and Hausdorff measures on metric spaces. Math. Z. 251 (2005), 131–146.

    Article  MathSciNet  MATH  Google Scholar 

  3. Ş. Costea: Besov capacity and Hausdorff measures in metric measure spaces. Publ. Mat. 53 (2009), 141–178.

    Article  MathSciNet  MATH  Google Scholar 

  4. L. C. Evans, R. F. Gariepy: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics, CRC Press, Boca Raton, 1992.

    Google Scholar 

  5. H. Federer: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 153, Springer, New York, 1969.

    Google Scholar 

  6. H. Federer, W. P. Ziemer: The Lebesgue set of a function whose distribution derivatives are p-th power summable. Math. J., Indiana Univ. 22 (1972), 139–158.

    Article  MathSciNet  MATH  Google Scholar 

  7. N. Fujii: A condition for a two-weight norm inequality for singular integral operators. Stud. Math. 98 (1991), 175–190.

    MathSciNet  MATH  Google Scholar 

  8. P. Hajłasz: Sobolev spaces on an arbitrary metric space. Potential Anal. 5 (1996), 403–415.

    MathSciNet  MATH  Google Scholar 

  9. P. Hajłasz, J. Kinnunen: Hölder quasicontinuity of Sobolev functions on metric spaces. Rev. Mat. Iberoam. 14 (1998), 601–622.

    Article  MATH  Google Scholar 

  10. P. Hajłasz, P. Koskela: Sobolev met Poincaré. Mem. Am. Math. Soc. 145 (2000), 1–101.

    MATH  Google Scholar 

  11. L. I. Hedberg, Y. Netrusov: An axiomatic approach to function spaces, spectral synthesis, and Luzin approximation. Mem. Am. Math. Soc. 188 (2007), 1–97.

    MathSciNet  MATH  Google Scholar 

  12. T. Heikkinen, P. Koskela, H. Tuominen: Approximation and quasicontinuity of Besov and Triebel-Lizorkin functions. To appear in Trans Am. Math. Soc.

  13. J. Heinonen, T. Kilpeläinen, O. Martio: Nonlinear Potential Theory of Degenerate Elliptic Equations, Dover Publications, Mineola, 2006.

    MATH  Google Scholar 

  14. N. Karak, P. Koskela: Capacities and Hausdorff measures on metric spaces. Rev. Mat. Complut. 28 (2015), 733–740.

    Article  MathSciNet  MATH  Google Scholar 

  15. N. Karak, P. Koskela: Lebesgue points via the Poincaré inequality. Sci. China Math. 58 (2015), 1697–1706.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Kinnunen, R. Korte, N. Shanmugalingam, H. Tuominen: Lebesgue points and capacities via the boxing inequality in metric spaces. Indiana Univ. Math. J. 57 (2008), 401–430.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Kinnunen, V. Latvala: Lebesgue points for Sobolev functions on metric spaces. Rev. Mat. Iberoam. 18 (2002), 685–700.

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Koskela, E. Saksman: Pointwise characterizations of Hardy-Sobolev functions. Math. Res. Lett. 15 (2008), 727–744.

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Koskela, D. Yang, Y. Zhou: Pointwise characterizations of Besov and Triebel-Lizorkin spaces and quasiconformal mappings. Adv. Math. 226 (2011), 3579–3621.

    Article  MathSciNet  MATH  Google Scholar 

  20. V. G. Maz’ya, V. P. Khavin: Non-linear potential theory. Russ. Math. Surv. 27 (1972), 71–148.

    Article  MATH  Google Scholar 

  21. Yu. V. Netrusov: Sets of singularities of functions in spaces of Besov and Lizorkin-Triebel type. Proc. Steklov Inst. Math. 187 (1990), 185–203; Translation from Tr. Mat. Inst. Steklova 187 (1989), 162–177.

    MathSciNet  MATH  Google Scholar 

  22. J. Orobitg: Spectral synthesis in spaces of functions with derivatives in H 1. Harmonic Analysis and Partial Differential Equations. Proc. Int. Conf., El Escorial, 1987, Lect. Notes Math. 1384, Springer, Berlin, 1989, pp. 202–206.

    Chapter  Google Scholar 

  23. J. Poelhuis, A. Torchinsky: Medians, continuity, and vanishing oscillation. Stud. Math. 213 (2012), 227–242.

    Article  MathSciNet  MATH  Google Scholar 

  24. N. Shanmugalingam: Newtonian spaces: An extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoam. 16 (2000), 243–279.

    Article  MathSciNet  MATH  Google Scholar 

  25. J.-O. Strömberg: Bounded mean oscillation with Orlicz norms and duality of Hardy spaces. Indiana Univ. Math. J. 28 (1979), 511–544.

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Yang: New characterizations of Hajłasz-Sobolev spaces on metric spaces. Sci. China, Ser. A 46 (2003), 675–689.

    Article  MathSciNet  MATH  Google Scholar 

  27. W. P. Ziemer: Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation. Graduate Texts in Mathematics 120, Springer, New York, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nijjwal Karak.

Additional information

This work was supported by the Academy of Finland via the Centre of Excellence in Analysis and Dynamics Research (Grant no. 271983).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karak, N. Generalized Lebesgue points for Sobolev functions. Czech Math J 67, 143–150 (2017). https://doi.org/10.21136/CMJ.2017.0405-15

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/CMJ.2017.0405-15

Keywords

MSC 2010

Navigation