Skip to main content
Log in

Drug Interactions Involving Aspirin (Acetylsalicylic Acid) and Salicylic Acid

  • Review Article
  • Pharmacokinetic Drug Interactions
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Aspirin (acetylsalicylic acid) is metabolically converted to salicyclic acid by the action of carboxylesterases. Although metabolic drug interactions involving aspirin are theoretically possible, there appear to have been no studies to date which have shown conclusively that aspirin hydrolysis is altered by coadministered drugs. However, a number of treatments are known to affect the rate or extent of aspirin absorption, including activated charcoal, antacids, cholestyramine and metoclopramide. Caffeine and metoprolol have been reported to increase peak salicylic acid concentration following aspirin administration, and coadministration of dipyridamole and aspirin results in higher plasma aspirin concentrations. The mechanism(s) responsible for these latter observations remains unknown.

Salicylic acid is extensively bound to plasma albumin, and many of the reported drug interactions involve displacement of the coadministered drug from plasma protein. Protein binding displacement appears to be the basis of salicylic acid interactions with diclofenac, flurbiprofen, ibuprofen, isoxicam, ketoprofen, naproxen, phenytoin and tolmetin. Following displacement of these agents increased clearance of total drug occurs, and consequently the plasma concentration of total drug decreases. Although generally not measured, unbound concentration of the interacting drug should not be markedly altered. Salicylic acid also increases total plasma clearance of fenoprofen but, unlike the interactions with the other propionic acid non-steroidals, plasma protein binding displacement does not appear to be involved. Induction of fenoprofen metabolism is a possibility, although there is no firm evidence from other studies that salicylate is able to induce the metabolism of coadministered drugs. Since salicylic acid is extensively metabolised, it is not surprising that it is able to inhibit the metabolism of certain coadministered drugs and chemicals, an effect which has been reported for salicylamide, valproic acid, m-xylene, and zomepirac. The interactions with salicylamide, m-xylene and zomepirac are probably competitive in nature since mutual inhibition of salicylic acid metabolism occurs. There is an additional component of protein binding displacement in the interactions with valproic acid and zomepirac, resulting in increased unbound drug concentration.

Certain coadministered drugs (or chemicals) may alter the metabolism of salicylic acid; inhibition of its metabolism has been demonstrated following treatment with benzoic acid, salicylamide, m-xylene, zomepirac and possibly cimetidine. In contrast, salicylic acid elimination is enhanced in oral contraceptive steroid users and by corticosteroid treatment. Oral contraceptive steroids induce both salicylic acid glucuronidation and salicylurate formation. Induction of metabolism has also been proposed to account for the effects of corticosteroids, but this is still to be proven.

Despite the fact that a relatively small percentage of an administered dose of salicylic acid is eliminated unchanged in the urine, it is nevertheless capable of decreasing the clearance of some renally excreted drugs. Salicylic acid both displaces acetazolamide and methotrexate from plasma protein and reduces their renal clearances, resulting in an increased unbound concentration of these drugs. The renal clearance of indomethacin is also reduced by salicylic acid, as is absorption and reabsorption, but its biliary clearance is apparently increased, resulting in little overall change in plasma clearance. The renal clearance of salicylic acid itself is pH-dependent and known to be increased by antacids in a dose-dependent manner.

Relatively few of the pharmacokinetic interactions reported to occur with salicylates have been shown to be of clinical importance, although the effects of activated charcoal, antacid and metoclopramide on aspirin absorption are of relevance in specific instances and toxicity has been reported as a result of coadministration of salicylate with acetazolamide, methotrexate and valproic acid. Although other interactions could potentially result in increased or diminished response, this has yet to be demonstrated in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott FS, Kassam J, Orr JM, Farrell K. The effect of aspirin on valproic acid metabolism. Clinical Pharmacology and Therapeutics 40: 94–100, 1986

    Article  PubMed  CAS  Google Scholar 

  • Ali Abrishami M, Thomas J. Aspirin intolerance — a review. Annals of Allergy 39: 28–37, 1977

    Google Scholar 

  • Amsel LP, Levy G. Drug biotransformation interactions in man. II: A pharmacokinetic study of the simultaneous conjugation of benzoic and salicylic acid with glycine. Journal of Pharmaceutical Sciences 58: 321–326, 1969

    Article  PubMed  CAS  Google Scholar 

  • Anderson CJ, Kaufman PL, Sturm RJ. Toxicity of combined therapy with carbonic anhydrase inhibitors and aspirin. American Journal of Ophthalmology 86: 516–519, 1978

    PubMed  CAS  Google Scholar 

  • Baer PA, Shore A, Ikeman RL. Transient fall in serum salicylate levels following intraarticular injection of steroid in patients with rheumatoid arthritis. Arthritis and Rheumatism 30: 345–347, 1987

    Article  PubMed  CAS  Google Scholar 

  • Birkett DJ, Meffin PJ, Wing LMH. Fundamentals of Clinical Pharmacology 6. Plasma protein binding. Current Therapeutics 95–106, August 1979

    Google Scholar 

  • Brooks PM, Khong TK. Flurbiprofen-aspirin interaction: a double-blind crossover study. Current Medical Research and Opinion 5: 53–57, 1977

    Article  PubMed  CAS  Google Scholar 

  • Brooks PM, Walser JJ, Bell MA, Buchanan WW, Rhymer AR. Indomethacin-aspirin interactions: a clinical appraisal. British Medical Journal 3: 69–71, 1975

    Article  PubMed  CAS  Google Scholar 

  • Builder J, Landecker K, Whitecross D, Piper DW. Aspirin esterase activity of gastric mucosal origin. Gastroenterology 73: 15–18, 1977

    PubMed  CAS  Google Scholar 

  • Campbell L, Wilson HK, Samuel AM, Gompertz D. Interactions of m-xylene and aspirin metabolism in man. British Journal of Industrial Medicine 45: 127–132, 1988

    PubMed  CAS  Google Scholar 

  • Champion GD, Paulus HE, Mongan E, Okun R, Pearson CM, et al. The effect of aspirin on serum indomethacin. Clinical Pharmacology and Therapeutics 13: 239–244, 1972

    PubMed  CAS  Google Scholar 

  • Corrocher R, Bambara LM, Caramaschi P, Testi R, Girelli M, et al. Effect of ranitidine on the absorption of aspirin. Digestion 37: 178–183, 1987

    Article  PubMed  CAS  Google Scholar 

  • Cowan RA, Hartnell GG, Lowdell CP, Baird IM, Leak AM. Metabolic acidosis induced by carbonic anhydrase inhibitors and salicylates in patients with normal renal function. British Medical Journal 289: 347–348, 1984

    Article  PubMed  CAS  Google Scholar 

  • Cressman WA, Wortham GF, Plostnicks J. Absorption and excretion of tolmetin in man. Clinical Pharmacology and Therapeutics 19: 224–233, 1976

    PubMed  CAS  Google Scholar 

  • Day RO, Graham GG, Champion GD, Lee E. Anti-rheumatic drug interactions. In Huskisson (Ed.) Clinics in rheumatic diseases, Vol. 10, pp. 251–275, W.B. Saunders Co, London, 1984

    Google Scholar 

  • Day RO, Harris G, Brown M, Graham GG, Champion GD. Interaction of salicylate and corticosteroids in man. British Journal of Clinical Pharmacology 26: 334–337, 1988

    Article  PubMed  CAS  Google Scholar 

  • Day RO, Shen D, Azarnoff DL. Induction of salicyluric acid formation in rheumatoid patients treated with salicylates. Clinical Pharmacokinetics 8: 263–271, 1983

    Article  PubMed  CAS  Google Scholar 

  • Decker WJ, Shpall RA, Corby DG, Combs HF, Payne CE. Inhibition of aspirin absorption by activated charcoal and apomorphine. Clinical Pharmacology and Therapeutics 10: 710–713, 1969

    PubMed  CAS  Google Scholar 

  • Desiraju RK, Nayak RK, Pritchard FJ. Zomepirac-aspirin interactions in man. Journal of Clinical Pharmacology 24: 371–380, 1984

    PubMed  CAS  Google Scholar 

  • Duggan JM, Chapman AL. The incidence of aspirin ingestion in patients with peptic ulcer. Medical Journal of Australia 1: 797–800, 1970

    PubMed  CAS  Google Scholar 

  • Edelman J, Potter JM, Hackett LP. The effect of intra-articular steroids on plasma salicylate concentrations. British Journal of Clinical Pharmacology 21: 301–307, 1986

    Article  PubMed  CAS  Google Scholar 

  • Esquivai M, Cussenot F, Olgilvie RI, East DS, Shaw DH. Interaction of isoxicam with acetylsalicylic acid. British Journal of Clinical Pharmacology 18: 567–571, 1984

    Article  Google Scholar 

  • Fenster PE, Comess KA, Hanson CD, Finley PR. Kinetics of the digoxin-aspirin combination. Clinical Pharmacology and Therapeutics 32: 428–430, 1982

    Article  PubMed  CAS  Google Scholar 

  • Filippone GA, Fish SS, Lacouture PG, Scavone JM, Lovejoy FH. Reversible adsorption (desorption) of aspirin from activated charcoal. Archives of Internal Medicine 147: 1390–1392, 1987

    Article  PubMed  CAS  Google Scholar 

  • Fleitman JS, Bruni J, Perrin JH, Wilder BJ. Albumin-binding interactions of sodium valproate. Journal of Clinical Pharmacology 20: 314–317, 1980

    Google Scholar 

  • Forman WB, Davidson ED, Webster LT. Enzymatic conversion of salicylic acid to salicylurate. Molecular Pharmacology 7: 247–259, 1971

    PubMed  CAS  Google Scholar 

  • Fraser DG, Ludden TM, Evens RP, Sutherland EW. Displacement of phenytoin from plasma protein binding sites by salicylate. Clinical Pharmacology and Therapeutics 27: 165–169, 1980

    Article  PubMed  CAS  Google Scholar 

  • Furst DE, Gupta N, Paulus HE. Salicylate metabolism in twins; evidence suggesting a genetic influence and induction of salicylurate formation. Journal of Clinical Investigation 60: 32–42, 1977

    Article  PubMed  CAS  Google Scholar 

  • Furst DE, Sarkissian E, Blocka K, Cassell S, Dromgoole S, et al. Serum concentrations of salicylate and naproxen during concurrent therapy in patients with rheumatoid arthritis. Arthritis and Rheumatism 30: 1157–1161, 1987

    Article  PubMed  CAS  Google Scholar 

  • Garnham JC, Raymond K, Shotton E, Turner P. The effect of buffered aspirin on plasma indomethacin. European Journal of Clinical Pharmacology 8: 107–113, 1975

    Article  PubMed  CAS  Google Scholar 

  • Goulden KJ, Dooley JM, Camfield PR, Fraser AD. Clinical valproate toxicity induced by acetylsalicylic acid. Neurology 37: 1392–1394, 1987

    Article  PubMed  CAS  Google Scholar 

  • Grace EM, Mewa AAM, Sweeney GD, Rosenfeld JM, Darke AC, et al. Lowering plasma isoxicam concentrations with acetylsalicylic acid. Journal of Rheumatology 13: 1119–1121, 1986

    PubMed  CAS  Google Scholar 

  • Graham GG, Champion GD, Day RO, Pauli PD. Patterns of plasma concentrations and urinary excretion of salicylate in rheumatoid arthritis. Clinical Pharmacology and Therapeutics 22: 410–420, 1977

    PubMed  CAS  Google Scholar 

  • Grennan DM, Ferry DG, Ashworth ME, Kenny RE, Mackinnon M. The aspirin-ibuprofen interaction in rheumatoid arthritis. British Journal of Clinical Pharmacology 8: 497–503, 1979

    Article  PubMed  CAS  Google Scholar 

  • Hahn K-J, Eiden W, Schettle M, Hahn M, Walter E, et al. Effect of cholestyramine on the gastrointestinal absorption of phenprocoumon and acetylsalicylic acid in man. European Journal of Clinical Pharmacology 4: 142–145, 1972

    Article  PubMed  CAS  Google Scholar 

  • Hansten PD, Hayton WL. Effect of antacid and ascorbic acid on serum salicylate concentration. Journal of Clinical Pharmacology 30: 326–331, 1980

    Google Scholar 

  • Ho PC, Triggs EJ, Bourne DWA, Heazlewood VJ. The effects of age and sex on the disposition of acetylsalicylic acid and its metabolites. British Journal of Clinical Pharmacology 19: 675–684, 1985

    Article  PubMed  CAS  Google Scholar 

  • Hobbs DC, Twomey TM. Piroxicam pharmacokinetics in man: aspirin and antacid interaction studies. Journal of Clinical Pharmacology 19: 270–281, 1979

    PubMed  CAS  Google Scholar 

  • Jeremy R, Towson J. Interaction between indomethacin and aspirin in the treatment of rheumatoid arthritis. Medical Journal of Australia 2: 127–129, 1970

    PubMed  CAS  Google Scholar 

  • Johnsson G, Regardh CG, Solvell L. Lack of a biological interaction of alprenolol and salicylate in man. European Journal of Clinical Pharmacology 6: 9–14, 1973

    Article  PubMed  CAS  Google Scholar 

  • Kaldestad E, Hansen T, Brath HK. Interaction of indomethacin and acetylsalicylic acid as shown by the serum concentrations of indomethacin and salicylate. European Journal of Clinical Pharmacology 9: 199–207, 1975

    Article  PubMed  CAS  Google Scholar 

  • Khoury W, Geraci K, Askari A, Johnson M. The effect of cimetidine on aspirin absorption. Gastroenterology 76: 1169, 1979

    Google Scholar 

  • Klinenberg JR, Miller F. Effect of corticosteroids on blood salicylate concentration. Journal of the American Medical Association 194: 131–134, 1965

    Article  Google Scholar 

  • Koren G, Roifman C, Gelfand E, Lavi S, Suria D, et al. Corticosteroids-salicylate interaction in a child with juvenile rheumatoid arthritis. Therapeutic Drug Monitoring 9: 177–179, 1987

    Article  PubMed  CAS  Google Scholar 

  • Kwan KC, Breault GO, Davis RL, Lei BW, Czerwinski AW, et al. Effects of concomitant aspirin administration on the pharmacokinetics of indomethacin in man. Journal of Pharmacokinetics and Biopharmaceutics 6: 451–476, 1978

    PubMed  CAS  Google Scholar 

  • Lau AH, Chang CW, Schlesinger PK. Evaluation of a potential drug interaction between sucralfate and aspirin in man. Clinical Pharmacology and Therapeutics 39: 151–155, 1986

    Article  PubMed  CAS  Google Scholar 

  • Leonard RF, Knott PJ, Rankin GO, Robinson DS, Melnick DE. Phenytoin-salicylate interaction. Clinical Pharmacology and Therapeutics 29: 56–60, 1981

    Article  PubMed  CAS  Google Scholar 

  • Leonards JR. Presence of acetylsalicylic acid in plasma following oral ingestion of aspirin. Proceedings of the Society for Experimental Biology and Medicine 100: 304–307, 1962

    Google Scholar 

  • Leonards JR, Levy G. Reduction or prevention of aspirin-induced occult gastrointestinal blood loss in man. Clinical Pharmacology and Therapeutics 10: 571–576, 1969

    PubMed  CAS  Google Scholar 

  • Levy G. Comparison of dissolution and absorption rates of different commercial aspirin tablets. Journal of Pharmaceutical Sciences 60: 388–392, 1961

    Article  Google Scholar 

  • Levy G. Pharmacokinetics of salicylate in man. Drug Metabolism Reviews 9: 3–19, 1979

    Article  PubMed  CAS  Google Scholar 

  • Levy G. Clinical pharmacokinetics of salicylates: a re-assessment. British Journal of Clinical Pharmacology 10: 285S–290S, 1980

    Article  PubMed  Google Scholar 

  • Levy G, Hayes BA. Physicochemical basis of the buffered acetylsalicylic acid controversy. New England Journal of Medicine 262: 1053–1058, 1960

    Article  PubMed  CAS  Google Scholar 

  • Levy G, Lampman T, Kamath BL, Garrettson LK. Decreased serum salicylate concentrations in children with rheumatic fever treated with antacid. New England Journal of Medicine 293: 323–325, 1975

    Article  PubMed  CAS  Google Scholar 

  • Levy G, Leonards JR. Urine pH and salicylate therapy. Journal of the American Medical Association 217: 81, 1971

    Article  PubMed  CAS  Google Scholar 

  • Levy G, Procknal JA. Drug biotransformation interactions in man. I. Mutual inhibition in glucuronide formation of salicylic acid and salicylamide in man. Journal of Pharmaceutical Sciences 57: 1330–1335, 1968

    Article  PubMed  CAS  Google Scholar 

  • Levy G, Regardh C-G. Drug biotransformation interactions in man. V. Acetaminophen and salicylic acid. Journal of Pharmaceutical Sciences 60: 608–611, 1971

    Article  PubMed  CAS  Google Scholar 

  • Levy G, Tsuchiya T. Effect of activated charcoal on aspirin absorption in man. Part I. Clinical Pharmacology and Therapeutics 13: 317–322, 1972

    PubMed  CAS  Google Scholar 

  • Levy G, Tsuchiya T, Amsel LP. Limited capacity for salicyl phenolic glucuronide formation and its effect on the kinetics of salicylate elimination in man. Clinical Pharmacology and Therapeutics 13: 258–268, 1972

    PubMed  CAS  Google Scholar 

  • Liegler DG, Henderson ES, Hahn MA, Oliverio VT. The effect of organic acids on renal clearance of methotrexate in man. Clinical Pharmacology and Therapeutics 10: 849–857, 1969

    PubMed  CAS  Google Scholar 

  • Lindquist B, Jensen KM, Johansson H, Hansen T. Effect of concurrent administration of aspirin and indomethacin on serum concentrations. Clinical Pharmacology and Therapeutics 15: 247–252, 1974

    PubMed  CAS  Google Scholar 

  • Lirberman SV, Wood JH. Aspirin formulation absorption rate. Journal of Pharmaceutical Sciences 53: 1492–1495, 1964

    Article  Google Scholar 

  • Lunde PKM, Rane A, Yaffe SJ, Lund L, Sjoqvist F. Plasma protein binding of diphenylhydantoin in man: interaction with other drugs and effect of temperature and plasma dilution. Clinical Pharmacology and Therapeutics 11: 846–855, 1970

    PubMed  CAS  Google Scholar 

  • Mandel MA. The synergistic effect of salicylates on methotrexate toxicity. Plastic and Reconstructive Surgery 57: 733–737, 1976

    Article  PubMed  CAS  Google Scholar 

  • Mason WD, Winer N. Kinetics of aspirin, salicylic acid and salicylic acid and salicyluric acid following oral administration of aspirin as a tablet and two buffered solutions. Journal of Pharmaceutical Sciences 70: 262–265, 1981

    Article  PubMed  CAS  Google Scholar 

  • Mason DW, Winer N. Influence of food on aspirin absorption from tablets and buffered solutions. Journal of Pharmaceutical Sciences 72: 819–821, 1983

    Article  PubMed  CAS  Google Scholar 

  • McElnay JC, D’Arcy PF. Protein binding displacement interactions and their clinical importance. Drugs 25: 495–513, 1983

    Article  PubMed  CAS  Google Scholar 

  • Meffin PJ, Zilm DM, Veenendaal JR. Reduced clofibric acid clearance in renal dysfunction is due to a futile cycle. Journal of Pharmacology and Experimental Therapeutics 227: 732–738, 1983

    PubMed  CAS  Google Scholar 

  • Menguy R, Desbaillets L, Okabe S, Masters YF. Abnormal aspirin metabolism in patients with cirrhosis and its possible relationship to bleeding in cirrhotics. Annals of Surgery 176: 412–418, 1972

    Article  PubMed  CAS  Google Scholar 

  • Miners JO, Attwood J, Birkett DJ. Influence of sex and oral contraceptive steroids on paracetamol metabolism. British Journal of Clinical Pharmacology 16: 503–510, 1983

    Article  PubMed  CAS  Google Scholar 

  • Miners JO, Attwood J, Birkett DJ. Determinants of acetaminophen metabolism: effects of inducers and inhibitors of drug metabolism on acetaminophen’s metabolic pathways. Clinical Pharmacology and Therapeutics 35: 480–486, 1984b

    Article  PubMed  CAS  Google Scholar 

  • Miners JO, Grgurinovich N, Whitehead AG, Robson RA, Birkett DJ. Influence of gender and oral contraceptive steroids on the metabolism of salicylic acid and acetylsalicylic acid. British Journal of Clinical Pharmacology 22: 135–142, 1986

    Article  PubMed  CAS  Google Scholar 

  • Miners JO, Robson RA, Birkett DJ. Gender and oral contraceptive steroids as determinants of drug glucuronidation: effects on clofibric acid elimination. British Journal of Clinical Pharmacology 18: 240–243, 1984a

    Article  PubMed  CAS  Google Scholar 

  • Muller FO, Hundt HKL, Muller DG. Pharmacokinetic and pharmacodynamic implications of long-term administration on nonsteroidal anti-inflammatory agents. International Journal of Clinical Pharmacology 15: 397–402, 1977

    CAS  Google Scholar 

  • Needs CJ, Brooks PM. Clinical pharmacokinetics of the salicylates. Clinical Pharmacokinetics 10: 164–177, 1985

    Article  PubMed  CAS  Google Scholar 

  • Neuvonen PJ. Clinical pharmacokinetics of oral activated charcoal in acute intoxications. Clinical Pharmacokinetics 7: 465–489, 1982

    Article  PubMed  CAS  Google Scholar 

  • Neuvonen PJ, Elfving SM, Elonen E. Reduction in absorption of digoxin, phenytoin and aspirin by activated charcoal in man. European Journal of Clinical Pharmacology 13: 213–218, 1978

    Article  PubMed  CAS  Google Scholar 

  • Nitelius E, Melander A, Wahlin-Boll E. Pharmacokinetic interaction of acetylsalicylic acid and dipyridamole. British Journal of Clinical Pharmacology 19: 379–383, 1985

    Article  PubMed  CAS  Google Scholar 

  • Odar-Cederlof I, Borga O. Impaired plasma protein binding of phenytoin in uremia and displacement effect of salicylic acid. Clinical Pharmacology and Therapeutics 20: 36–47, 1976

    PubMed  CAS  Google Scholar 

  • O’Laughlin JC, Silvoso GR, Ivey KJ. Effect of an H2-blocker on gastric ulcers in patients taking aspirin. Gastroenterology 78: 1230, 1980

    Google Scholar 

  • Orr JM, Abbott FS, Farrell K, Ferguson S, Sheppard I, et al. Interaction between valproic acid and aspirin in epileptic children: serum protein binding and metabolic effects. Clinical Pharmacology and Therapeutics 31: 642–649, 1982

    Article  PubMed  CAS  Google Scholar 

  • Paxton JW. Effects of aspirin on salivary and serum phenytoin kinetics in healthy subjects. Clinical Pharmacology and Therapeutics 27: 170–178, 1980

    Article  PubMed  CAS  Google Scholar 

  • Pedersen AK, Fitzgerald GA. Dose-related kinetics of aspirin. Presystemic acetylation of platelet cylooxygenase. New England Journal of Medicine 311: 1206–1211, 1984

    Article  PubMed  CAS  Google Scholar 

  • Riess W, Stierlin H, Degen P, Faigle JW, Gerardin A, et al. Pharmacokinetics and metabolism of the anti-inflammatory agent Voltaren. Scandinavian Journal of Rheumatology 22 (Suppl.): 17–29, 1978

    Article  PubMed  CAS  Google Scholar 

  • Ross-Lee LM, Eadie MJ, Heazlewood V, Bochner F, Tyrer JH. Aspirin pharmacokinetics in migraine. The effect of metoclopramide. European Journal of Clinical Pharmacology 24: 777–785, 1983

    Article  PubMed  CAS  Google Scholar 

  • Ross-Lee LM, Heazlewood V, Tyrer JH, Eadie MJ. Aspirin treatment of migraine attacks: plasma drug level data. Cephalagia 2: 9–14, 1982

    Article  CAS  Google Scholar 

  • Roth GJ, Majerus PW. The mechanism of the effect of aspirin on human platelets. I. Acetylation of a paniculate fraction protein. Journal of Clinical Investigation 56: 624–632, 1975

    Article  PubMed  CAS  Google Scholar 

  • Rowland M, Riegelman S, Harris PA, Sholkoff SD. Absorption kinetics of aspirin in man following oral administration of an aqueous solution. Journal of Pharmaceutical Sciences 61: 379–385, 1972

    Article  PubMed  CAS  Google Scholar 

  • Rubin A, Rodda BE, Warrick P, Gruber CM, Ridolfo AS. Interactions of aspirin with non-steroidal anti-inflammatory drugs in man. Arthritis and Rheumatism 16: 635–645, 1973

    Article  PubMed  CAS  Google Scholar 

  • Rubin A, Warrick P, Wolen RL, Chernish SM, Ridolfo AS, et al. Physiological disposition of fenoprofen in man: III. Metabolism and protein binding of fenoprofen. Journal of Pharmacology and Experimental Therapeutics 183: 449–457, 1972

    PubMed  CAS  Google Scholar 

  • Rumble RH, Brooks PM, Roberts MS. Interaction between levamisole and aspirin in man. British Journal of Clinical Pharmacology 7: 631–633, 1979

    Article  PubMed  CAS  Google Scholar 

  • Samter M, Beers RF. Intolerance to aspirin — clinical studies and consideration of its pathogenesis. Annals of Internal Medicine 68: 975–983, 1968

    PubMed  CAS  Google Scholar 

  • Schafer-Korting M, Kirch W, Axthelm T, Kohler H, Mutschier E. Atenolol interaction with aspirin, allopurinol and ampicillin. Clinical Pharmacology and Therapeutics 33: 283–288, 1983

    Article  PubMed  CAS  Google Scholar 

  • Schultz P, Perrier CV, Ferber-Perret F, Vanden Heuvel WJA, Steelman SL. Diflunisal, a new-acting analgesic and prostaglandin inhibitor: effect of concomitant acetylsalicylic acid therapy on ototoxicity and on disposition of both drugs. Journal of International Medical Research 7: 61–68, 1979

    Google Scholar 

  • Segre EJ, Chaplin M, Forchielli E, Runkel R, Sevelius H. Naproxen-aspirin interactions in man. Clinical Pharmacology and Therapeutics 15: 374–379, 1974

    PubMed  CAS  Google Scholar 

  • Seymour RA, Williams FM, Ward A, Rawlins MD. Aspirin metabolism and efficacy in post-operative dental pain. British Journal of Clinical Pharmacology 17: 697–702, 1984

    Article  PubMed  CAS  Google Scholar 

  • Somogyi A, Gugler R. Drug interactions with cimetidine. Clinical Pharmacokinetics 7: 23–41, 1982

    Article  PubMed  CAS  Google Scholar 

  • Spahn H, Langguth P, Kirch W, Mutschler E, Ohnhaus EE. Pharmacokinetics of salicylates administered with metoprolol. Arzneimittel-Forschung 36: 1697–1699, 1986

    PubMed  CAS  Google Scholar 

  • Sweeney KR, Chapron DJ, Brandt JL, Gomolin IH, Feig PU, et al. Toxic interaction between acetazolamide and salicylate: case reports and a pharmacokinetic explanation. Clinical Pharmacology and Therapeutics 40: 518–524, 1986

    Article  PubMed  CAS  Google Scholar 

  • Tishler SL, Goldman P. Properties and reactions of salicyl-coenzyme A. Biochemical Pharmacology 19: 143–150, 1970

    Article  PubMed  CAS  Google Scholar 

  • Tonkin AL, Wing LMH. Interactions of non-steroidal anti-inflammatory drugs. Baillière’s Clinical Rheumatology 2: 455–483, 1988

    Article  PubMed  CAS  Google Scholar 

  • Trnavska Z, Trnavsky K, Smondrk J. The effect of cimetidine on the pharmacokinetics of salicylic acid. Drugs in Experimental Clinical Research 11: 703–707, 1985

    CAS  Google Scholar 

  • Volans GN. The absorption of aspirin during migraine. British Medical Journal 4: 265–269, 1974

    Article  PubMed  CAS  Google Scholar 

  • Volans GN. The effect of metoclopramide on the absorption of effervescent aspirin in migraine. British Journal of Clinical Pharmacology 2: 57–63, 1975

    PubMed  CAS  Google Scholar 

  • Wanwimolruk S, Birkett DJ, Brooks PM. Protein binding of some non-steroidal anti-inflammatory drugs in rheumatoid arthritis. Clinical Pharmacokinetics 7: 85–92, 1982

    Article  PubMed  CAS  Google Scholar 

  • Weiner IM, Washington JA, Mudge GH. Studies on the renal excretion of salicylate in the dog. Bulletin of Johns Hopkins Hospital 105: 284–297, 1959

    CAS  Google Scholar 

  • Weiss HJ, Aledort LM, Kochura S. The effect of salicylates on the homeostatic properties of platelets in man. Journal of Clinical Investigation 47: 2169–2180, 1968

    Article  PubMed  CAS  Google Scholar 

  • Williams FM. Clinical significance of esterases in man. Clinical Pharmacokinetics 10: 392–403, 1985

    Article  PubMed  CAS  Google Scholar 

  • Williams RL, Upton RA, Bushkin JN, Jones RM. Ketoprofenaspirin interactions. Clinical Pharmacology and Therapeutics 30: 226–231, 1981

    Article  PubMed  CAS  Google Scholar 

  • Wiliis JV, Kendall MJ, Jack DB. A study of the effect of aspirin on the pharmacokinetics of oral and intravenous diclofenac sodium. European Journal of Clinical Pharmacology 18: 415–418, 1980

    Article  Google Scholar 

  • Wiseman EH, Chang YH, Hobbs DC. Interaction of sudoxicam and aspirin in animals and man. Clinical Pharmacology and Therapeutics 18: 441–448, 1975

    PubMed  CAS  Google Scholar 

  • Yacobi A, Levy G. Intraindividual relationships between serum protein binding of drugs in normal subjects, patients with impaired renal function, and rats. Journal of Pharmaceutical Sciences 66: 1285–1288, 1977

    Article  PubMed  CAS  Google Scholar 

  • Yoovathaworn KC, Sriwtanakul K, Thithapandha A. Influence of caffeine on aspirin pharmacokinetics. European Journal of Drug Metabolism and Pharmacokinetics 11: 71–76, 1986

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miners, J.O. Drug Interactions Involving Aspirin (Acetylsalicylic Acid) and Salicylic Acid. Clin-Pharmacokinet 17, 327–344 (1989). https://doi.org/10.2165/00003088-198917050-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-198917050-00003

Keywords

Navigation