Skip to main content
Log in

Clinical Pharmacokinetics of Zopiclone

  • Review Article
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Zopiclone is a cyclopyrrolone hypnotic agent. It possesses a chiral centre and is commercially available as a racemic mixture. Methods involving high performance liquid chromatography (HPLC), gas chromatography, capillary electrophoresis (CE) and high performance thin layer chromatography have been developed for the quantitation of zopiclone and its 2 main metabolites in biological samples. For the chiral determination of the enantiomers of zopiclone and its metabolites, HPLC and CE methods are available.

After oral administration, zopiclone is rapidly absorbed, with a bioavailability of approximately 80%. The plasma protein binding of zopiclone has been reported to be between 45 and 80%. Zopiclone is rapidly and widely distributed to body tissues including the brain, and is excreted in urine, saliva and breast milk.

Zopiclone is partly metabolised in the liver to form an inactive N-demethylated derivative and an active N-oxide metabolite. In addition, approximately 50% of the administered dose is decarboxylated and excreted via the lungs. Less than 7% of the administered dose is renally excreted as unchanged zopiclone. In urine, the N-demethyl and N-oxide metabolites account for 30% of the initial dose. The terminal elimination half-life (t1/2z) of zopiclone ranges from 3.5 to 6.5 hours.

The pharmacokinetics of zopiclone in humans are stereoselective. After oral administration of the racemic mixture, Cmax (time to maximum plasma concentration), AUG (area under the plasma time-concentration curve) and t1/2z values are higher for the dextrorotatory enantiomer owing to the slower total clearance and smaller volume of distribution (corrected by the bioavailability), compared with the levorotatory enantiomer. In urine, the concentrations of the dextrorotatory enantiomers of the N-demethyl and N-oxide metabolites are higher than those of the respective antipodes.

The pharmacokinetics of zopiclone are altered by aging and are influenced by renal and hepatic functions. Drug interactions have been observed with erythromycin, trimipramine and carbamazepine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hempel G, Blaschke G. Enantioselective determination of zopiclone and its metabolites by capillary electrophoresis. J Chromatogr. In press

  2. Fernandez C, Gimenez F, Mayrargue J, et al. Degradation and racemization of zopiclone enantiomers in plasma and partially aqueous solutions. Chirality 1995; 7: 267–71

    Article  CAS  Google Scholar 

  3. Gaillot J, Heusse D, Houghton GW, et al. Pharmacokinetics and metabolism of zopiclone. Pharmacology 1983; 27Suppl. 2: 76–91

    Article  PubMed  CAS  Google Scholar 

  4. Stanley C, Mitchell P, Kaye CM. Simple and sensitive method for monitoring zopiclone in plasma by high-performance liquid chromatography with fluorescence detection. Analyst 1985; 110: 83–4

    Article  PubMed  CAS  Google Scholar 

  5. Le Liboux A, Frydman A, Gaillot J. Simultaneous determination of zopiclone and its two major metabolites (N-oxide and N-desmethyl) in human biological fluids by reversed-phase high-performance liquid chromatography. J Chromatogr 1987; 417: 151–8

    Article  PubMed  Google Scholar 

  6. Tracqui A, Kintz P, Mangin P. High-performance liquid chromatography assay with diode-array detection for toxicological screening of zopiclone, Zolpidem, suriclone and alpidem in human plasma. J Chromatogr 1993; 616: 95–103

    Article  PubMed  CAS  Google Scholar 

  7. Royer-Morrot MJ, Rambourg M, Jacob I, et al. Determination of zopiclone in plasma using column liquid chromatography with ultraviolet detection. J Chromatogr 1992; 581: 297–9

    Article  PubMed  CAS  Google Scholar 

  8. Fernandez C, Gimenez F, Baune B, et al. Determination of the enantiomers of zopiclone and its two chiral metabolites in urine using an automated coupled achiral-chiral chromatographic system. J Chromatogr 1993; 617: 271–8

    Article  PubMed  CAS  Google Scholar 

  9. Miller LG, Leduc BW, Greenblatt DJ. Determination of zopiclone in plasma by liquid chromatography with application to steady-state monitoring. J Chromatogr 1986; 380: 211–5

    Article  PubMed  CAS  Google Scholar 

  10. Foster RT, Caille G, Anh Ho Ngoc, et al. Stereospecific high-performance liquid chromatographic assay of zopiclone in human plasma. J Chromatogr 1994; 658: 161–6

    Article  CAS  Google Scholar 

  11. Blaschke G, Hempel G, Muller WE. Preparative and analytical separation of the zopiclone enantiomers and determination of their affinity to the benzodiazepine receptor binding site. Chirality 1993; 5: 419–21

    Article  PubMed  CAS  Google Scholar 

  12. Fernandez C, Baune B, Gimenez F, et al. Determination of zopiclone enantiomers in plasma using a chiral cellulose carbamate column. J Chromatogr 1991; 572: 195–202

    Article  PubMed  CAS  Google Scholar 

  13. Ahrens B, Schutz H, Seno H, et al. Screening, identification and determination of the two new hypnotics Zolpidem and zopiclone. Arzneim Forsch 1994; 44: 799–802

    CAS  Google Scholar 

  14. Debruyne D, Lacotte J, Hurault de Ligny B, et al. Determination of Zolpidem and zopiclone in serum by capillary column gas chromatography. J Pharm Sci 1991; 80: 71–4

    Article  PubMed  CAS  Google Scholar 

  15. Gaillard Y, Gay-Montchamp JP, Ollagnier M. Gas chromatographic determination of zopiclone in plasma after solid-phase extraction. J Chromatogr 1993; 619: 310–4

    Article  PubMed  CAS  Google Scholar 

  16. Kennel S, Kintz P, Tracqui A, et al. Identification and quantitation in plasma of zopiclone by gas chromatography with nitrogen-phosphorus detection. J Chromatogr 1990; 527: 169–73

    Article  PubMed  CAS  Google Scholar 

  17. Boniface PJ, Martin IC, Nolan SL, et al. Development of a method for the determination of zopiclone in whole blood. J Chromatogr 1992; 584: 199–206

    Article  PubMed  CAS  Google Scholar 

  18. Howard PJ, McLean E, Dundee JW. High performance liquid chromatography and fluorescence detection in the estimation of zopiclone in plasma samples. Proceedings of the British Pharmacology Society; 1985 Dec 18–20. Br J Clin Pharmacol 1986; 21(5): 614

    Google Scholar 

  19. Caille G, Dufouich P, Spenard J, et al. Pharmacokinetic and clinical parameters of zopiclone and trimipramine when administered simultaneously to volunteers. Biopharm Drug Dispos 1984; 5: 117–25

    Article  PubMed  CAS  Google Scholar 

  20. Channer KS, Dent M, Roberts CJC. The effect of posture at the time of administration on the central depressant effects of the new hypnotic zopiclone. Br J Clin Pharmacol 1984; 18: 879–86

    Article  PubMed  CAS  Google Scholar 

  21. Fernandez C, Maradeix V, Gimenez F, et al. Pharmacokinetics of zopiclone and its enantiomers in Caucasian young healthy volunteers. Drug Metab Dispos 1993; 21: 1125–8

    PubMed  CAS  Google Scholar 

  22. Houghton GW, Dennis MJ, Trempleton R, et al. A repeated dose pharmacokinetic study of a new hypnotic agent, zopiclone. Int J Clin Pharmacol Ther Toxicol 1985; 23: 97–100

    PubMed  CAS  Google Scholar 

  23. Matheson I, Sande HA, Gaillot J. The excretion of zopiclone into breast milk. Br J Clin Pharmacol 1990; 30: 267–71

    Article  PubMed  CAS  Google Scholar 

  24. Parker G, Roberts CJC. Plasma concentrations and central nervous system effects of the new hypnotic agent zopiclone in patients with chronic liver disease. Br J Clin Pharmacol 1983; 16: 259–65

    Article  PubMed  CAS  Google Scholar 

  25. Goa KL, Heel RC. Zopiclone: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy as an hypnotic. Drugs 1986; 32: 48–65

    Article  PubMed  CAS  Google Scholar 

  26. Blanchard JC, Boireau A, Julou L. Brain receptors and zopiclone. Pharmacology 1983; 17Suppl. 2: 59–63

    Article  Google Scholar 

  27. Byrnes JJ, Greenblatt DJ. Benzodiazepine receptor binding of non-benzodiazepines in vivo: alpidem, Zolpidem and zopiclone. Brain Res Bull 1992; 29: 905–8

    Article  PubMed  CAS  Google Scholar 

  28. Trifiletti RR, Snyder SH. Anxiolytic cyclopyrrolones zopiclone and suriclone bind to a novel site linked allosterically to benzodiazepine receptors. Mol Pharmacol 1984; 26: 458–69

    PubMed  CAS  Google Scholar 

  29. Pounder DJ, Davies JI. Zopiclone poisoning: tissue distribution and potential for postmortem diffusion. Forensic Sci Int 1993; 65: 177–83

    Article  Google Scholar 

  30. Hempel G, Blaschke G. Enantioselective metabolism of zopiclone in vitro and in vivo. Presented at 5th International Symposium on Chiral Discrimination; Stockholm, 1994

  31. Gaillot J, Le Roux Y, Houghton GW, et al. Clinical factors for pharmacokinetics of zopiclone in the elderly and in patients with liver and renal insufficiency. Sleep 1987; 10Suppl. 1: 7–21

    PubMed  Google Scholar 

  32. Viron B, De Meyer M, Le Riboux A, et al. Steady state pharmacokinetics of zopiclone during multiple oral dosing (7.5 mg) in patients with severe chronic renal failure. Int Clin Psychopharmacol 1990; 5Suppl. 2: 95–104

    PubMed  Google Scholar 

  33. Marc Aurélé J, Caille J, Bourgoin J. Comparison of zopiclone pharmacokinetics in patients with impaired renal fonction and nomal subjects. Effect of hemodialysis. Sleep 1987; 10Suppl. 1: 22–6

    PubMed  Google Scholar 

  34. Aranko K, Luurila H, Backman JT, et al. The effect of erythromycine on the pharmacokinetics and pharmacodynamics of zopiclone. Br J Clin Pharmacol 1994; 38: 363–7

    Article  PubMed  CAS  Google Scholar 

  35. Larivière L, Caille G, Elie R. The effects of low and moderate doses of alcohol on the pharmacokinetics parameters of zopiclone. Biopharm Drug Dispos 1986; 7: 207–10

    Article  PubMed  Google Scholar 

  36. Saano V, Hansen PP, Paronen P. Interactions and comparative effects of zopiclone, diazepam and lorazepam on psychomotor performance and elimination pharmacokinetics in healthy volunteers. Pharmacol Toxicol 1992; 70: 135–9

    Article  PubMed  CAS  Google Scholar 

  37. Seppälä T, Nuotto E, Dreyfus JF. Drug alcohol interactions on psychomotor skills: zopiclone and flunitrazepam. Pharmacology 1983; 27Suppl. 2: 127–35

    PubMed  Google Scholar 

  38. Kuitunen T, Mattila MJ, Seppälä T, et al. Actions of zopiclone and carbamazepine, alone and in combination on human skilled performance in laboratory and clinical tests. Br J Clin Pharmacol 1990; 30: 453–61

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez, C., Martin, C., Gimenez, F. et al. Clinical Pharmacokinetics of Zopiclone. Clin. Pharmacokinet. 29, 431–441 (1995). https://doi.org/10.2165/00003088-199529060-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199529060-00004

Keywords

Navigation