Skip to main content
Log in

Pramlintide for the Treatment of Insulin-Requiring Diabetes Mellitus

Rationale and Review of Clinical Data

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Despite a number of incremental, beneficial improvements in diabetes mellitus therapy over the past few decades, the fundamental challenge of replicating the physiological entry into, and uptake of glucose from, the circulation remains unresolved.

Pramlintide is an analogue of the β-cell hormone amylin that simulates its important glucoregulatory actions. In humans, pramlintide slows gastric emptying and suppresses glucagon secretion during the prandial/postprandial period to slow and reduce the entry of glucose into the circulation. These actions, in conjunction with the glucose cellular uptake function of insulin, help normalise fluctuations in circulating glucose levels to a greater degree than is possible with insulin treatment alone. In clinical studies, pramlintide treatment as an adjunct to insulin decreased glycosylated haemoglobin levels (0.39–0.62%) with a concomitant weight loss (0.5–1.4kg) and no significant increase in severe hypoglycaemia.

Pramlintide treatment as a potential adjunct to insulin therapy is in late-stage development for patients with type 1 diabetes and insulin-using patients with type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Table I
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Unger RH, Aguilar-Parada E, Muller WA, et al. Studies of pancreatic alpha cell function in normal and diabetic subjects. J Clin Invest 1970; 49(4): 837–48

    Article  PubMed  CAS  Google Scholar 

  2. Diabetes Control and Complications Trial Research Group. Epidemiology of severe hypoglycemia in the Diabetes Control and Complications Trial. Am J Med 1991; 90(4): 450–9

    Article  Google Scholar 

  3. Diabetes Control and Complications Trial Research Group. Hypoglycemia in the Diabetes Control and Complications Trial. Diabetes 1997; 46(2): 271–86

    Article  Google Scholar 

  4. UK Prospective Diabetes Study Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352(9131): 837–53

    Article  Google Scholar 

  5. Cryer PE, Binder C, Bolli GB, et al. Hypoglycemia in IDDM. Diabetes 1989; 38(9): 1193–9

    Article  PubMed  CAS  Google Scholar 

  6. Cryer PE. Banting Lecture, hypoglycemia: the limiting factor in the management of IDDM. Diabetes 1994; 43(11): 1378–89

    Article  PubMed  CAS  Google Scholar 

  7. Kaufman FR, Halvorson M, Miller D, et al. Insulin pump therapy in type 1 pediatric patients: now and into year 2000. Diabetes Metab Res Rev 1999 15(5): 338–352

    Article  PubMed  CAS  Google Scholar 

  8. DeFronzo RA. Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med 1999; 131(4): 281–303

    PubMed  CAS  Google Scholar 

  9. Hirsch IB. Type 1 diabetes mellitus and the use of flexible insulin regimens. Am Fam Physician 1999; 60(8): 2343–52

    PubMed  CAS  Google Scholar 

  10. Bolli GB, Di Marchi RD, Park GD, et al. Insulin analogues and their potential in the management of diabetes mellitus. Diabetologia 1999; 42(10): 1151–67

    Article  PubMed  CAS  Google Scholar 

  11. Jacobs MA, Keulen ET, Kanc K, et al. Metabolic efficacy of preprandial administration of Lys(B28), Pro(B29) human insulin analog in IDDM patients: a comparison with human regular insulin during a three-meal testperiod. Diabetes Care 1997; 20(8): 1279–86

    Article  PubMed  CAS  Google Scholar 

  12. Heinemann L, Heise T, Wahl LC, et al. Prandial glycaemia after a carbohydrate-rich meal in type I diabetic patients: using the rapid acting insulin analogue [Lys (B28), Pro (B29)] human insulin. Diabet Med 1996; 13(7): 625–9

    Article  PubMed  CAS  Google Scholar 

  13. Bruttomesso D, Pianta A, Mari A, et al. Restoration of early rise in plasma insulin levels improves the glucose tolerance of type 2 diabetic patients. Diabetes 1999; 48(1): 99–105

    Article  PubMed  CAS  Google Scholar 

  14. Boland EA, Tamborlane WV. Continuous glucose monitoring in youth with type 2 diabetes: overcoming barriers to successful treatment. Diabetes Technol Ther 2000; 2 Suppl. 1: S53–9

    Article  PubMed  Google Scholar 

  15. Boland E, Monsod T, Delucia M, et al. Limitations of conventional methods of self-monitoring of blood glucose: lessons learned from 3 days of continuous glucose sensing in pediatric patients with type 1 diabetes. Diabetes Care 2001; 24(11): 1858–62

    Article  PubMed  CAS  Google Scholar 

  16. Bryden KS, Neil A, Mayou RA, et al. Eating habits, body weight, and insulin misuse: a longitudinal study of teenagers and young adults with type 1 diabetes. Diabetes Care 1999; 22(12): 1956–60

    Article  PubMed  CAS  Google Scholar 

  17. McConnell EM, Harper R, Campbell M, et al. Achieving optimal diabetic control in adolescence: the continuing enigma. Diabetes Metab Res Rev 2001; 17(1): 67–74

    Article  PubMed  CAS  Google Scholar 

  18. Purnell JQ, Hokanson JE, Marcovina SM, et al. Effect of excessive weight gain with intensive therapy of type 1 diabetes on lipid levels and blood pressure: results from the DCCT. Diabetes Control and Complications Trial. JAMA 1998; 280(2): 140–6

    CAS  Google Scholar 

  19. Weyer C, Maggs DG, Young AA, et al. Amylin replacement with pramlintide as an adjunct to insulin therapy in type 1 and type 2 diabetes mellitus: a physiological approach toward improved metabolic control. Curr Pharm Des 2001; 7(14): 1353–73

    Article  PubMed  CAS  Google Scholar 

  20. Unger RH, Orci L. The role of glucagon in the endogenous hyperglycemia of diabetes mellitus. Annu Rev Med 1977; 28: 119–30

    Article  PubMed  CAS  Google Scholar 

  21. Gerich JE, Schnieder V, Dippe SE, et al. Characterization of the glucagon response to hypoglycemia in man. J Clin Endocrinol Metab 1974; 38(1): 77–82

    Article  PubMed  CAS  Google Scholar 

  22. Kieffer TJ, Habener JF. The glucagon-like peptides. Endocr Rev 1999; 20(6): 876–913

    Article  PubMed  CAS  Google Scholar 

  23. Orskov C, Rabenhoj L, Wettergren A, et al. Tissue and plasma concentrations of amidated and glycine-extended glucagonlike peptide I in humans. Diabetes 1994; 43(4): 535–9

    Article  PubMed  CAS  Google Scholar 

  24. Holst JJ, Orskov C. Incretin hormones: an update. Scand J Clin Lab Invest Suppl 2001; (234): 75–85

  25. Creutzfeldt W. The entero-insular axis in type 2 diabetes: incretins as therapeutic agents. Exp Clin Endocrinol Diabetes 2001; 109 Suppl. 2: S288–303

    Article  PubMed  CAS  Google Scholar 

  26. Turton MD, O'Shea D, Gunn I, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 1996; 379(6560): 69–72

    Article  PubMed  CAS  Google Scholar 

  27. Meeran K, O'Shea D, Mark C, et al. Repeated intracerebroventricular administration of glucagon-like peptide-l-(7-36) amide or exendin-(9-39) alters body weight in the rat. Endocrinology 1999; 140(1): 244–50

    Article  PubMed  CAS  Google Scholar 

  28. Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329(14): 977–86

    Article  Google Scholar 

  29. Diabetes Control and Complications Trial Research Group. The absence of a glycemic threshold for the development of longterm complications: the perspective of the Diabetes Control and Complications Trial. Diabetes 1996; 45(10): 1289–98

    Article  Google Scholar 

  30. Lasker RD. The diabetes control and complications trial: implications for policy and practice. N Engl J Med 1993; 329(14): 1035–6

    Article  PubMed  CAS  Google Scholar 

  31. American Diabetes Association. Implications of the Diabetes Control and Complications Trial. Diabetes Care 2000; 23 Suppl. 1: S24–6

    Google Scholar 

  32. Diabetes Control and Complications Trial Research Group. Weight gain associated with intensive therapy in the diabetes control and complications trial: the DCCT Research Group. Diabetes Care 1988; 11(7): 567–73

    Article  Google Scholar 

  33. Diabetes Control and Complications Trial Research Group. Influence of intensive diabetes treatment on body weight and composition of adults with type 1 diabetes in the Diabetes Control and Complications Trial. Diabetes Care 2001; 24(10): 1711–21

    Article  Google Scholar 

  34. UK Prospective Diabetes Study Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998; 352(9139): 854–65

    Google Scholar 

  35. UK Prospective Diabetes Study Group. Overview of 6 years' therapy of type II diabetes: a progressive disease. Diabetes 1995; 44: 1249–58

    Article  Google Scholar 

  36. Nathan DM. Some answers, more controversy, from UKPDS: United Kingdom Prospective Diabetes Study. Lancet 1998; 352(9131): 832–3

    Article  PubMed  CAS  Google Scholar 

  37. American Diabetes Association. Implications of the United Kingdom Prospective Diabetes Study. Diabetes Care 2000; 23 Suppl. 1: S27–31

    Google Scholar 

  38. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N Engl J Med 2000; 342(6): 381–9

    Article  Google Scholar 

  39. Cooper GJ, Willis AC, Clark A, et al. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci U S A 1987; 84(23): 8628–32

    Article  PubMed  CAS  Google Scholar 

  40. Cockburn DC, Holt SM, Roberts AN, et al. Localization of the amylin locus to chromosome 12 [abstract no. 2614]. Cytogenet Cell Genet 1989; 51: 977

    Google Scholar 

  41. Cooper GJ. Amylin compared with calcitonin gene-related peptide: structure, biology, and relevance to metabolic disease. Endocr Rev 1994; 15(2): 163–201

    PubMed  CAS  Google Scholar 

  42. Young AA, Wang MW, Gedulin B, et al. Diabetogenic effects of salmon calcitonin are attributable to amylin-like activity. Metabolism 1995; 44(12): 1581–9

    Article  PubMed  CAS  Google Scholar 

  43. Lukinius A, Korsgren O, Grimelius L, et al. Expression of islet amyloid polypeptide in fetal and adult porcine and human pancreatic islet cells. Endocrinology 1996; 137(12): 5319–25

    Article  PubMed  CAS  Google Scholar 

  44. Badman MK, Jermany JL, Shennan KIJ, et al. Pro-islet amyloid polypeptide is cleaved by the endopeptidase PC2 but not by furin [abstract no. 99]. Diabetologia 1995; 38 Suppl. 1: A27

    Google Scholar 

  45. Koda JE, Fineman MS, Kolterman OG, et al. 24 hour plasma amylin profiles are elevated in IGT subjects vs. normal controls [abstract no. 876]. Diabetes 1995; 44 Suppl. 1: 238A

    Google Scholar 

  46. Koda JE, Fineman M, Rink TJ, et al. Amylin concentrations and glucose control. Lancet 1992; 339(8802): 1179–80

    Article  PubMed  CAS  Google Scholar 

  47. Fineman MS, Giotta MP, Thompson RG, et al. Amylin response following Sustacal® ingestion is diminished in type II diabetic patients treated with insulin [abstract no. 566]. Diabetologia 1996; 39 Suppl. 1: A149

    Google Scholar 

  48. Kruger DF, Gatcomb PM, Owen SK. Clinical implications of amylin and amylin deficiency. Diabetes Educ 1999; 25(3): 389–97

    Article  PubMed  CAS  Google Scholar 

  49. Gedulin B, Jodka C, Green D, et al. Amylin inhibition of arginine-induced glucagon secretion: comparison with glucagon-like-peptide-1 (7–36)-amide (GLP-1) [abstract no. 584]. Diabetologia 1996; 39 Suppl. 1: A154

    Google Scholar 

  50. Gedulin BR, Rink TJ, Young AA. Dose-response for glucagonostatic effect of amylin in rats. Metabolism 1997; 46(1): 67–70

    Article  PubMed  CAS  Google Scholar 

  51. Gedulin B, Jodka C, Percy A, et al. Neutralizing antibody and the antagonist AC187 may inhibit glucagon secretion in rats [abstract no. 0911]. Diabetes 1997; 40 Suppl. 1: 238A

    Google Scholar 

  52. Silvestre RA, Rodriguez-Gallardo J, Jodka C, et al. Selective amylin inhibition of the glucagon response to arginine is extrinsic to the pancreas. Am J Physiol 2001; 280(3): E443–9

    CAS  Google Scholar 

  53. Young AA, Gedulin B, Vine W, et al. Gastric emptying is accelerated in diabetic BB rats and is slowed by subcutaneous injections of amylin. Diabetologia 1995; 38(6): 642–8

    Article  PubMed  CAS  Google Scholar 

  54. Young AA, Gedulin BR, Rink TJ. Dose-responses for the slowing of gastric emptying in a rodent model by glucagon-like peptide (7–36)NH2, amylin, cholecystokinin, and other possible regulators of nutrient uptake. Metabolism 1996; 45(1): 1–3

    Article  PubMed  CAS  Google Scholar 

  55. Rushing PA. Central amylin signaling and the regulation of energy homeostasis. Curr Pharm Des 2003; 9(10): 819–25

    Article  PubMed  CAS  Google Scholar 

  56. Rushing PA, Hagan MM, Seeley RJ, et al. Amylin: a novel action in the brain to reduce body weight. Endocrinology 2001; 41(2): 850–3

    Google Scholar 

  57. Young A, Moore C, Herich J, et al. Neuroendocrine actions of amylin. In: Poyner D, Marshall I, Brain SD, editors. The CGRP family: calcitonin gene-related peptide (CGRP), amylin, and adrenomedullin. Georgetown (TX): Landes Bioscience, 2000: 91–102

    Google Scholar 

  58. Beaumont K, Kenney MA, Young AA, et al. High affinity amylin binding sites in rat brain. Mol Pharmacol 1993; 44(3): 493–7

    PubMed  CAS  Google Scholar 

  59. Christopoulos G, Paxinos G, Huang XF, et al. Comparative distribution of receptors for amylin and the related peptides calcitonin gene related peptide and calcitonin in rat and monkey brain. Can J Physiol Pharmacol 1995; 73(7): 1037–41

    Article  PubMed  CAS  Google Scholar 

  60. Sexton PM, Perry KJ. Amylin receptors in the central nervous system. Recent Res Dev Neurochem 1996; 1: 157–66

    Google Scholar 

  61. van Rossum D, Menard DP, Fournier A, et al. Autoradiographic distribution and receptor binding profile of [I-125]Bolton Hunter-rat amylin binding sites in the rat brain. J Pharmacol Exp Ther 1994; 270(2): 779–87

    PubMed  Google Scholar 

  62. Sexton PM, Paxinos G, Kenney MA, et al. In vitro autoradiographic localization of amylin binding sites in rat brain. Neuroscience 1994; 62(2): 553–67

    Article  PubMed  CAS  Google Scholar 

  63. Riediger T, Rauch M, Jurat G, et al. Cellular mechanisms of amylin activating area postrema and subfornical organ neurons [abstract no. 856.2]. Soc Neurosci Abstr 1999; 25(2): 2140

    Google Scholar 

  64. Edwards GL, Gedulin BR, Jodka C, et al. Area postrema (AP)-lesions block the regulation of gastric emptying by amylin [abstract no. P133]. Neurogastroenterol Motil 1998; 10(4): 26

    Google Scholar 

  65. Jodka C, Green D, Young A, et al. Amylin modulation of gastric emptying in rats depends upon an intact vagus nerve [abstract no. 867]. Diabetes 1996; 45 Suppl. 2: 235A

    Google Scholar 

  66. Nyholm B, Brock B, Ørskov L, et al. Amylin receptor agonists: a novel pharmacological approach in the management of insulin-treated diabetes mellitus. Expert Opin Investig Drugs 2001; 10(9): 1–12

    Article  Google Scholar 

  67. Janes S, Gaeta L, Beaumont K, et al. The selection of pramlintide for clinical evaluation [abstract no. 865]. Diabetes 1996; 45 Suppl. 2: 235A

    Google Scholar 

  68. Young AA, Vine W, Gedulin BR, et al. Preclinical pharmacology of pramlintide in the rat: comparisons with human and rat amylin. Drug Dev Res 1996; 37(4): 231–48

    Article  CAS  Google Scholar 

  69. Fineman MS, Koda JE, Shen LZ, et al. The human amylin analog, pramlintide, corrects postprandial hyperglucagonemia in patients with type 1 diabetes. Metabolism 2002; 51(5): 636–41

    Article  PubMed  CAS  Google Scholar 

  70. Fineman M, Weyer C, Maggs DG, et al. The human amylin analog, pramlintide, reduces postprandial hyperglucagonemia in patients with type 2 diabetes mellitus. Horm Metab Res 2002; 34: 504–8

    Article  PubMed  CAS  Google Scholar 

  71. Nyholm B, Ørskov L, Hove K, et al. The amylin analog pramlintide improves glycemic control and reduces postprandial glucagon concentrations in patients with type 1 diabetes mellitus. Metabolism 1999; 48(7): 935–41

    Article  PubMed  CAS  Google Scholar 

  72. Kong MF, Stubbs TA, King P, et al. The effect of single doses of pramlintide on gastric emptying of two meals in men with IDDM. Diabetologia 1998; 41(5): 577–83

    Article  PubMed  CAS  Google Scholar 

  73. Kong MF, King P, Macdonald IA, et al. Infusion of pramlintide, a human amylin analogue, delays gastric emptying in men with IDDM. Diabetologia 1997; 40: 82–8

    Article  PubMed  CAS  Google Scholar 

  74. Kong M-FS-C, Macdonald IA, Tattersall RB. Gastric emptying in diabetes. Diabet Med 1996 13(2): 112–119

    Article  PubMed  CAS  Google Scholar 

  75. Thompson RG, Gottlieb A, Organ K, et al. Pramlintide: a human amylin analogue reduced postprandial plasma glucose, insulin and c-peptide concentrations in patients with type II diabetes. Diabet Med 1997; 14(7): 547–55

    Article  PubMed  CAS  Google Scholar 

  76. Kolterman OG, Schwartz S, Corder C, et al. Effect of 14 days' subcutaneous administration of the human amylin analogue, pramlintide (AC137), on an intravenous insulin challenge and response to a standard liquid meal in patients with IDDM. Diabetologia 1996; 39(4): 492–9

    Article  PubMed  CAS  Google Scholar 

  77. Thompson RG, Peterson J, Gottlieb A, et al. Effects of pramlintide, an analog of human amylin, on plasma glucose profiles in patients with IDDM: results of a multicenter trial. Diabetes 1997; 46(4): 63263–6

    Article  Google Scholar 

  78. Kolterman OG, Gottlieb A, Moyses C, et al. Reduction of postprandial hyperglycemia in subjects with IDDM by intravenous infusion of AC137, a human amylin analogue. Diabetes Care 1995; 18(8): 1179–82

    Article  PubMed  CAS  Google Scholar 

  79. Levetan C, Want LL, Weyer C, et al. Impact of pramlintide on glucose fluctuations and postprandial glucose, glucagon, and triglycerides excursions among patients with type 1 diabetes intensively treated with insulin pumps. Diabetes Care 2003; 26(1): 1–8

    Article  PubMed  CAS  Google Scholar 

  80. Whitehouse F, Kruger DF, Fineman M, et al. A randomized study and open-label extension evaluating the long-term efficacy of pramlintide as an adjunct to insulin therapy in type 1 diabetes. Diabetes Care 2002; 25(4): 724–30

    Article  PubMed  CAS  Google Scholar 

  81. Hollander PA, Levy P, Fineman MS, et al. Pramlintide as an adjunct to insulin therapy improves long-term glycemic and weight control in patients with type 2 diabetes. Diabetes Care 2003; 26(3): 784–90

    Article  PubMed  CAS  Google Scholar 

  82. Thompson RG, Pearson L, Schoenfeld SL, et al. Pramlintide, a synthetic analog of human amylin, improves the metabolic profile of patients with type 2 diabetes using insulin: the Pramlintide in Type 2 Diabetes Group. Diabetes Care 1998; 21(6): 987–93

    Article  PubMed  CAS  Google Scholar 

  83. Ratner RE, Want LL, Fineman MS, et al. Adjunctive therapy with the amylin analogue pramlintide leads to a combined improvement in glycemic and weight control in insulin-treated patients with type 2 diabetes. Diabetes Technol Ther 2002; 4(1): 51–61

    Article  PubMed  CAS  Google Scholar 

  84. Gottlieb A, Velte M, Fineman M, et al. Pramlintide as an adjunct to insulin therapy improved glycemic and weight control in people with type 1 diabetes during treatment for 52 weeks [abstract no. 439-P]. Diabetes 2000; 49(1): A109

    Google Scholar 

  85. Kolterman O, Fineman M, Burrell T, et al. Adjunctive therapy with pramlintide lowered A1C without an increase in overall severe hypoglycemia event rate in patients with type 1 diabetes approaching ADA glycemic targets [abstract no. 532-P]. Diabetes 2003; 52 Suppl. 1: A124

    Article  Google Scholar 

  86. Hollander P, Maggs DG, Ruggles JA, et al. Effect of pramlintide on weight in overweight and obese insulin-treated patients. Diabetes Obes Metab 2004; 12: 661–8

    CAS  Google Scholar 

  87. Pehling G, Tessari P, Gerich JE, et al. Abnormal meal carbohydrate disposition in insulin-dependent diabetes: relative contributions of endogenous glucose production and initial splanchnic uptake and effect of intensive insulin therapy. J Clin Invest 1984; 74(3): 985–91

    Article  PubMed  CAS  Google Scholar 

  88. Dinneen S, Alzaid A, Turk D, et al. Failure of glucagon suppression contributes to postprandial hyperglycaemia in IDDM. Diabetologia 1995; 38: 337–43

    Article  PubMed  CAS  Google Scholar 

  89. Dinneen S, Gerich J, Rizza R. Carbohydrate metabolism in noninsulin-dependent diabetes mellitus. N Engl J Med 1992; 327(10): 707–13

    Article  PubMed  CAS  Google Scholar 

  90. Firth RG, Bell PM, Marsh HM, et al. Postprandial hyperglycemia in patients with noninsulin-dependent diabetes mellitus. Role of hepatic and extrahepatic tissues. J Clin Invest 1986; 77(5): 1525–32

    CAS  Google Scholar 

  91. Edelman SV, Weyer C. Unresolved challenges with insulin therapy in type 1 and type 2 diabetes: potential benefit of replacing amylin, a second β-cell hormone. Diabetes Tech Ther 2002; 4: 175–89

    Article  CAS  Google Scholar 

  92. Weyer C, Gottlieb A, Kim D, et al. Pramlintide reduces postprandial glucose excursions when added to regular insulin or insulin lispro in subjects with type 1 diabetes: a dose-timing study. Diabetes Care 2003; 26(11): 3074–9

    Article  PubMed  CAS  Google Scholar 

  93. Maggs DG, Fineman M, Kornstein J, et al. Pramlintide reduces postprandial glucose excursions when added to insulin lispro in subjects with type 2 diabetes: a dose-timing study. Diabetes Metab Res Rev 2004; 20: 55–60

    Article  PubMed  CAS  Google Scholar 

  94. Data on file, Amylin Pharmaceuticals Inc., 2002

  95. Bhavsar S, Watkins J, Young A. Comparison of central and peripheral administration of amylin on reduction of food intake in rats [abstract no. 1187]. Diabetologia 1997; 40 Suppl. 1: A302

    Google Scholar 

  96. Rushing PA, Lutz TA, Seeley RJ, et al. Amylin and insulin interact to reduce food intake in rats. Horm Metab Res 2000; 32: 62–5

    Article  PubMed  CAS  Google Scholar 

  97. Heise T, Heinemann L, Maggs D, et al. Pramlintide does not impair symptomatic or catecholaminergic responses to hypoglycemia [abstract no. 2007-PO]. Diabetes 2003; 52 Suppl. 1: A463

    Google Scholar 

  98. Kolterman O, Burrell T, Shen L, et al. Initiation of pramlintide using dose-titration in intensively-treated patients with type 1 diabetes resulted in mitigation of nausea and hypoglycemia [abstract no. 62-LB]. Presented at the 2003 American Diabetes Association Meeting; 2003 Jun 13–17; New Orleans

Download references

Acknowledgements

We gratefully acknowledge the contributions of Dr Susan Strobel and Miriam Ahern in the preparation of this review. Funding for the studies discussed in this review was provided wholly by Amylin Pharmaceuticals, Inc. Davida Kruger, Certified Nurse Practitioner, has participated in studies funded by, and Maury Gloster, MD, is an employee of, Amylin Pharmaceuticals, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davida F. Kruger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruger, D.F., Gloster, M.A. Pramlintide for the Treatment of Insulin-Requiring Diabetes Mellitus. Drugs 64, 1419–1432 (2004). https://doi.org/10.2165/00003495-200464130-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200464130-00003

Keywords

Navigation