Skip to main content
Log in

A Review of the Concept of the Heart Rate Deflection Point

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

The heart rate deflection point (HRDP) is a downward or upward change from the linear HR-work relationship evinced during progressive incremental exercise testing. The HRDP is reported to be coincident with the anaerobic threshold. In 1982, Conconi and colleagues suggested that this phenomenon could be used as a noninvasive method to assess the anaerobic threshold. These researchers developed a field test to assess the HRDP, which has become popularised as the ‘Conconi test’. Concepts used to define and assess the anaerobic threshold as well as methodological procedures used to determine the HRDP are diverse in the literature and have contributed to controversy surrounding the HRDP concept. Although the HRDP may be assessed in either field or laboratory settings, the degree of HR deflection is highly dependent upon the type of protocol used. The validity of HRDP to assess the anaerobic threshold is uncertain, although a high degree of relationship exists between HRDP and the second lactate turnpoint. The HRDP appears to be reliable when a positive identification is made; however, not all studies report 100% reproducibility. Although the physiological mechanisms explaining the HRDP are unresolved, a relationship exists between the degree and direction of HRDP and left ventricular function. The HRDP has potential to be used for training regulation purposes. Clinically, it may be incorporated to set exercise intensity parameters for cardiac rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Table II

Similar content being viewed by others

References

  1. de Wit MJP, der Weduwe CJ, Wolfhagen PJJM, et al. Validity of peak oxygen uptake calculations from heart rate deflection points. Int J Sports Med 1997; 18: 201–7

    Article  PubMed  Google Scholar 

  2. Jones AM, Doust JH. Lack of reliability in Concern’s heart rate deflection point. Int J Sports Med 1995; 16: 541–4

    Article  PubMed  CAS  Google Scholar 

  3. Kara M, Gokbel H, Bediz C, et al. Determination of the heart rate deflection point by the dmax method. J Sports Med Phys Fitness 1996; 36: 31–4

    PubMed  CAS  Google Scholar 

  4. Mahon AD, Vaccaro P. Can the point of deflection from linearity of heart rate determine ventilatory threshold in children? Pediatr Exerc Sci 1991; 3: 256–62

    Google Scholar 

  5. Zacharogiannis E, Farrally M. Ventilatory threshold, heart rate deflection point and middle distance running performance. J Sports Med Phys Fitness 1993; 33: 337–47

    PubMed  CAS  Google Scholar 

  6. Schmid A, Huonker M, Aramendi JF, et al. Heart rate deflection compared to 4 mmol × 1−1 lactate threshold during incremental exercise and to lactate during steady state exercise on an arm-cranking ergometer in paraplegic athletes. Eur J Appl Physiol 1998; 78: 177–82

    Article  CAS  Google Scholar 

  7. Vachon JA, Bassett DR, Clarke S. Validity of the heart rate deflection point as a predictor of lactate threshold during running. J Appl Physiol 1999; 87: 452–9

    PubMed  CAS  Google Scholar 

  8. Stathus G, Sucec A. The reliability of the heart rate deflection point (HRDP) and running speed at the HRDP in male distance runners [abstract]. Int J Sports Med 1987; 8: 239

    Google Scholar 

  9. Conconi F, Ferrari M, Ziglio PG, et al. Determination of the anaerobic threshold by a noninvasive field test in runners. J Appl Physiol 1982; 52: 869–73

    PubMed  CAS  Google Scholar 

  10. Cellini M, Vitiello P, Nagliati A, et al. Noninvasive determination of the anaerobic threshold in swimming. Int J Sports Med 1986; 7: 347–51

    Article  PubMed  CAS  Google Scholar 

  11. Ribeiro JP, Fielding RA, Hughes V, et al. Heart rate break point may coincide with the anaerobic and not the aerobic threshold. Int J Sports Med 1985; 6: 220–4

    Article  PubMed  CAS  Google Scholar 

  12. Maffulli N, Sjodin B, Ekblom B. A laboratory method for non invasive anaerobic threshold determination. J Sports Med 1987; 27: 419–23

    CAS  Google Scholar 

  13. Bunc V, Hofmann P, Leitner H, et al. Verification of heart rate threshold. Eur J Appl Physiol 1995; 70: 263–9

    Article  CAS  Google Scholar 

  14. Hofmann P, Bunc V, Leitner H, et al. Heart rate threshold related to lactate turn point and steady-state exercise on a cycle ergometer. Eur J Appl Physiol 1994; 69: 132–9

    Article  CAS  Google Scholar 

  15. Hofmann P, Peinhaupt G, Leitner H, et al. Evaluation of heart rate threshold by means of lactate steady state and endurance tests in white water kayakers. The Way to Win: International Congress on Applied Research in Sports; 1994 Aug 9–11; Helsinki, 217–20

  16. Hofmann P, Pokan R, Preidler K, et al. Relationship between heart rate threshold, lactate turn point and myocardial function. Int J Sports Med 1994; 15: 232–7

    Article  PubMed  CAS  Google Scholar 

  17. Thorlund W, Podolin DA, Mazzeo RS. Coincidence of lactate threshold and HR-power output threshold under varied nutritional states. Int J Sports Med 1994; 15: 301–4

    Article  Google Scholar 

  18. Bodner ME, Rhodes EC, Courts KD. Reliability of a mathematical model to reproduce heart rate threshold and the relationship to ventilatory threshold [abstract]. Med Sci Sports Exerc 1998; 30 Suppl.: 320

    Google Scholar 

  19. Bodner ME, Rhodes EC, Langill RH, et al. Heart rate threshold: relationship to steady state cycling at ventilatory threshold in trained cyclists [abstract]. Med Sci Sports Exerc 1999; 31 Suppl.: 1561

    Google Scholar 

  20. Pokan R, Hofmann P, Von Duvillard SP, et al. The heart rate performance curve and left ventricular function during exercise in patients after myocardial infarction. Med Sci Sports Exerc 1998; 30: 1475–80

    Article  PubMed  CAS  Google Scholar 

  21. Pokan R, Hofmann P, Von Duvillard SP, et al. The heart rate turnpoint reliability and methodological aspects. Med Sci Sports Exerc 1999; 31: 903–7

    Article  PubMed  CAS  Google Scholar 

  22. Hofmann P, Pokan R, von Duvillard SP, et al. Heart rate performance curve during incremental cycle ergometry exercise in healthy young male subjects. Med Sci Sports Exerc 1997; 29: 762–8

    Article  PubMed  CAS  Google Scholar 

  23. Pokan R, Hofmann P, Preidler K, et al. Correlation between inflection of heart rate/work performance curve and myocardial function in exhausting cycle ergometer exercise. Eur J Appl Physiol 1993; 67: 385–8

    Article  CAS  Google Scholar 

  24. Hofmann P, Pokan R, Lehmann M, et al. Influence of parasympathetic blockade on heart rate performance curve and blood lactate during incremental cycle ergometer exercise. The Way to Win: International Congress on Applied Research in Sports; 1994 Aug 9–11; Helsinki, 233–6

  25. Hofmann P, Pokan R, Schmid P, et al. Load dependent myocardial function and heart rate performance curve in healthy young and older male subjects [abstract]. Int J Sports Med 1996; 17: S13

    Google Scholar 

  26. Pokan R, Hofmann P, Von Duvillard SP, et al. Parasympathetic receptor blockade and the heart rate performance curve. Med Sci Sports Exerc 1998; 30: 229–33

    PubMed  CAS  Google Scholar 

  27. Petit MA, Nelson CM, Rhodes EC. Comparison of a mathematical model to predict 10km performance from the conconi test and ventilatory threshold. Can J Appl Physiol 1997; 22: 562–72

    Article  PubMed  CAS  Google Scholar 

  28. Tokmakidis SP, Leger L. External validity of the Conconi’s heart rate anaerobic threshold as compared to the lactate threshold. Exerc Physiol 1988; 3: 43–58

    Article  Google Scholar 

  29. Bunc VJ, Heller J. Comparison of two methods of noninvasive anaerobic threshold determination in middle-aged men. Sports Med Training Rehabil 1992; 3: 87–94

    Article  Google Scholar 

  30. Foster C, Spatz P, Georgakopoulos N. Left ventricular function in relation to the heart rate performance curve. Clin Exerc Physiol 1999; 1: 29–32

    Google Scholar 

  31. Droghetti P, Borsetto C, Casoni I, et al. Noninvasive determination of the anaerobic threshold in canoeing, cross-country skiing, cycling, roller and ice-skating, rowing, and walking. Eur J Appl Physiol 1985; 53: 299–303

    Article  CAS  Google Scholar 

  32. Droghetti P. Determination of the anaerobic threshold on a rowing ergometer by the relationship between work output and heart rate. Scand J Sports Sci 1986; 8: 59–62

    Google Scholar 

  33. Kuipers H, Keizer HA, de Vries T, et al. Comparison of heart rate as a non-invasive determination of anaerobic threshold with the lactate threshold when cycling. Eur J Appl Physiol 1988; 58: 303–6

    Article  CAS  Google Scholar 

  34. Tokmakidis SP, Leger LA. Comparison of mathematically determined blood lactate and heart rate ‘threshold’ points and relationship with performance. Eur J Appl Physiol 1992; 64: 309–17

    Article  CAS  Google Scholar 

  35. Bunc V, Heller J, Leso J. Kinetics of heart rate responses to exercise. J Sports Sci 1988; 6: 39–48

    Article  PubMed  CAS  Google Scholar 

  36. Francis KT, McClatchey PR, Sumison JR, et al. The relationship between anaerobic threshold and heart rate linearity during cycle ergometry. Eur J Appl Physiol 1989; 59: 273–7

    Article  CAS  Google Scholar 

  37. Nikolaizik WH, Knopfli B, Leitner E, et al. The anaerobic threshold in cystic fibrosis: comparison of V-slope method, lactate turnpoints, and Conconi test. Pediatr Pulmonol 1998; 25: 147–53

    Article  PubMed  CAS  Google Scholar 

  38. Gaisl G, Hofmann P, Heart rate determination of anaerobic threshold in children. Pediatr Exerc Sci 1990; 2: 29–36

    Google Scholar 

  39. Ballarin E, Borsetto C, Cellini M, et al. Adaptation of the Conconi test to children and adolescents. Int J Sports Med 1989; 10: 334–8

    Article  PubMed  CAS  Google Scholar 

  40. Baraldi E, Zanconato S, Santuz PA, et al. A comparison of two noninvasive methods in the determination of the anaerobic threshold in children. Int J Sports Med 1989; 10: 132–4

    Article  PubMed  CAS  Google Scholar 

  41. Gaisl G, Wiesspeiner G. A noninvasive method of determining the anaerobic threshold in children. Int J Sports Med 1987; 8: 41–4

    Google Scholar 

  42. Sallo M. Anaerobic threshold in preschool children evaluated indirectly with the aid of an incremental exercise in bicycle ergometer. Biol Sport 1994; 11: 31–5

    Google Scholar 

  43. Rogers KL, Reybrouck T, Weymans M, et al. The relationship between heart rate deflection and ventilatory threshold in children following heart surgery. Pediatr Exerc Sci 1995; 7: 263–9

    Google Scholar 

  44. Wassermann K, Whipp BJ, Koyal SN, et al. Anaerobic threshold and respiratory exchange during exercise. J Appl Physiol 1973; 35: 236–43

    Google Scholar 

  45. Jones AM, Doust JH. The Concern test is not valid for estimation of the lactate turnpoint in runners. J Sport Sci 1997; 15: 385–94

    Article  CAS  Google Scholar 

  46. Billat LV. Use of blood lactate measurements for prediction of exercise performance and control for training. Sports Med 1996; 22: 157–75

    Article  PubMed  CAS  Google Scholar 

  47. Hopkins SR, McKenzie DC. The laboratory assessment of endurance performance in cyclists. Can J Appl Physiol 1994; 19: 266–74

    Article  PubMed  CAS  Google Scholar 

  48. Rhodes EC, McKenzie DC. Predicting marathon time from anaerobic threshold measurements. Physician Sports Med 1984; 12: 95–8

    Google Scholar 

  49. Powers SK, Dodd S, Deason R, et al. Ventilatory threshold, running economy and distance running performance of trained athletes. Res Q Exerc Sport 1983; 54: 179–82

    Google Scholar 

  50. Coyle EF, Feltner ME, Kautz SA, et al. Physiological and biomechanical factors associated with elite endurance cycling performance. Med Sci Sports Exerc 1991; 23: 93–107

    PubMed  CAS  Google Scholar 

  51. Farrell PA, Wilmore JH, Coyle EF, et al. Plasma lactate accumulation and distance running performance. Med Sci Sports Exerc 1979; 11: 338–44

    CAS  Google Scholar 

  52. Tanaka K, Matsuura Y, Kumagai S, et al. Relationships of anaerobic threshold and onset of blood lactate accumulation with endurance performance. Eur J Appl Physiol 1983; 52: 51–6

    Article  CAS  Google Scholar 

  53. Brooks GA. Anaerobic threshold: review of the concept and directions for future research. Med Sci Sports Exerc 1985; 17: 22–31

    PubMed  CAS  Google Scholar 

  54. Davis JA. Anaerobic threshold: review of the concept and directions for future research. Med Sci Sports Exerc 1985; 17: 6–18

    PubMed  CAS  Google Scholar 

  55. Wasserman K. Determinants and detection of the anaerobic threshold and consequences of exercise above it. Circulation 1987; 76 Suppl. VI: VI29–39

    Google Scholar 

  56. Skinner JS, McLellan TH. The transition form aerobic to anaerobic metabolism. Res Q Exerc Sport 1980; 51: 234–48

    PubMed  CAS  Google Scholar 

  57. Aunola S, Rusko H. Does anaerobic threshold correlate with maximal lactate steady state? J Sport Sci 1992; 10: 309–23

    Article  CAS  Google Scholar 

  58. Brooke JD, Hamley EJ, Thomason H. The relationship of heart-rate to physical work. J Physiol 1968; 197: 61–3P

    Google Scholar 

  59. Brooke JD, Hamley EJ. The heart-rate-physical work curve analysis for the prediction of exhausting work ability. Med Sci Sports Exerc 1972; 4: 23–6

    CAS  Google Scholar 

  60. Pendergast D, Cerretelli P, Rennie DW. Aerobic and glycolytic metabolism in arm exercise. J Appl Physiol 1979; 47: 754–60

    PubMed  CAS  Google Scholar 

  61. Ballarin E, Sudhues U, Borsetto C, et al. Reproducibility of the Conconi test: test repeatability and observer variations. Int J Sports Med 1996; 17: 520–7

    Article  PubMed  CAS  Google Scholar 

  62. Pokan R, Hofmann P, Lehmann M, et al. Heart rate deflection related to lactate performance curve and plasma catecholamine response during incremental cycle ergometer exercise. Eur J Appl Physiol 1995; 70: 175–9

    Article  CAS  Google Scholar 

  63. Bourgois J, Vrijens J. The Concord test: a controversial concept for the determination of the anaerobic threshold in young rowers. Int J Sports Med 1998; 19: 553–9

    Article  PubMed  CAS  Google Scholar 

  64. Conconi F, Borsetto C, Casoni I, et al. Noninvasive determination of the anaerobic threshold in cyclists in medical and scientific aspects of cycling. In: Burke ER, Newsom MM, editors. Medical and scientific aspects of cycling. Champaign (IL): Human Kinetics, 1988: 79–91

    Google Scholar 

  65. Conconi F, Grazzi G, Casoni I, et al. The Conconi test: methodology after 12 years of application. Int J Sports Med 1996; 17: 509–19

    Article  PubMed  CAS  Google Scholar 

  66. Jeukendrup AE, Hesselink MKC, Kuipers H, et al. The Conconi test [letter]. Int J Sports Med 1997; 18: 393–6

    Article  PubMed  CAS  Google Scholar 

  67. Concern F, Grazzi G, Casoni I, et al. Reply to ‘The Conconi test’. Int J Sports Med 1997; 18: 394–6

    Article  Google Scholar 

  68. Perini R, Orizio C, Gamba A, et al. Kinetics of heart rate and catecholamines during exercise in humans. Eur J Appl Physiol 1993; 66: 500–6

    Article  CAS  Google Scholar 

  69. Yamamoto Y, Mitsumasa M, Hughson RL, et al. The ventilatory threshold gives maximal lactate steady state. Eur J Appl Physiol 1991; 63: 55–9

    Article  CAS  Google Scholar 

  70. Pessenhofer H, Meier A, Schwaberger G, et al. Verification of hypotheses about the physiological basis of the Concern test by model simulation [abstract]. Int J Sports Med 1991; 12: 119

    Google Scholar 

  71. Tulppo MP, Makikallio TH, Seppanen T, et al. Vagal modulation of heart rate during exercise: effects of age and physical fitness. Am J Physiol 1998; 274 (2 Pt 2): H424–9

    Google Scholar 

  72. Hofmann P, Seibert F-J, Pokan R, et al. Relationship between blood pH, potassium and the heart rate performance curve [abstract]. Med Sci Sports Exerc 1999; 31 Suppl.: 628

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward C. Rhodes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodner, M.E., Rhodes, E.C. A Review of the Concept of the Heart Rate Deflection Point. Sports Med 30, 31–46 (2000). https://doi.org/10.2165/00007256-200030010-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200030010-00004

Keywords

Navigation