Skip to main content
Log in

Muscarinic Receptor Agonists in Alzheimer’s Disease

More Than Just Symptomatic Treatment?

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Research into and development of selective muscarinic receptor agonists for the treatment of Alzheimer’s disease is based on the ‘cholinergic hypothesis’ of the disease. This implies that cholinergic replacement therapy might be beneficial in alleviating some of the cognitive dysfunctions associated with the disorder. Muscarinic M1 receptor—selective agonists may be effective in the treatment of Alzheimer’s disease, regardless of the extent of degeneration of presynaptic cholinergic projections to the frontal cortex and hippocampus. In this context, such compounds represent a more rational treatment for Alzheimer’s disease than the cholinesterase inhibitors.

However, disappointing clinical results have been reported with some muscarinic agonists in patients with Alzheimer’s disease. This may be due to a lack of selectivity for M1 receptors (as is the case with milameline), low intrinsic activity (Lu 25109), very low bioavailability and extensive metabolism (xanomeline), and a narrow safety margin [all of the abovementioned drugs and sabcomeline (SB 202026)].

Recent studies indicate a relationship between the formation of β-amyloid plaques and neurofibrillary tangles and the loss of cholinergic function in the brains of patients who had had Alzheimer’s disease. A cholinergic hypofunction in Alzheimer’s disease can be linked to the formation of neurotoxic β-amyloids, which can further decrease the release of acetylcholine (a presynaptic effect) and impair the coupling of M1 receptors with G-proteins (a postsynaptic effect). This uncoupling leads to decreased signal transduction, impairments in cognition, a reduction in the levels of trophic-secreted amyloid precursor proteins, the generation of more neurotoxic β-amyloids and a further decrease in acetylcholine release. This ‘vicious cycle’ may be prevented, in principle, by M1-selective agonists.

These new findings raise the exciting prospect that future M1 agonists may be useful both as symptomatic treatments (e.g. to treat cognitive and behavioural symptoms) and as disease-modifying agents in Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Court JA, Perry EK. Dementia: the neurochemical basis of putative transmitter orientated therapy. Pharmac Ther 1991; 52: 423–43

    CAS  Google Scholar 

  2. Fisher A, Barak D. Progress and perspectives in new muscarinic agonists. Drug News Perspectives 1994; 7: 453–64

    Google Scholar 

  3. Simonson W. Promising agents for treating Alzheimer’s disease. Am J Health Cyst Pharm 1998; 55: S11–S16

    CAS  Google Scholar 

  4. Spencer CM, Noble S. Rivastigmine: a review of its use in Alzheimer’s disease. Drugs Aging 1998; 13: 391–411

    PubMed  CAS  Google Scholar 

  5. Cummings JL, Vinters HV, Cole GM, et al. Etiologies, pathophysiology, cognitive reserve, and treatment opportunities. Neurology 1998; 51: S2–S17

    PubMed  CAS  Google Scholar 

  6. Giacobini E. From molecular structure to Alzheimer therapy. Jap J Pharmacol 1997; 74: 225–41

    PubMed  CAS  Google Scholar 

  7. Pavia J, de Ceballos ML, de la Cuesta FS. Alzheimer’s disease: relationship between muscarinic cholinergic receptors, beta-amyloid and tau proteins. Fundam Clin Pharmacol 1998; 12: 473–81

    PubMed  CAS  Google Scholar 

  8. Avery EE, Baker LD, Asthana S, et al. Potential role of muscarinic agonists in Alzheimer’s disease. Drugs Aging 1997; 11: 450–9

    PubMed  CAS  Google Scholar 

  9. Eglen RM, Hegde SS. Muscarinic receptor subtypes: pharmacology and therapeutic potential. DN&P 1997; 10: 462–9

    CAS  Google Scholar 

  10. Fisher A. Muscarinic agonists for the treatment of Alzheimer’s disease: progress and perspectives. Exp Opin Invest Drugs 1997; 6: 1395–411

    CAS  Google Scholar 

  11. Wulfert E. Treatment development strategies for Alzheimer’s disease. CNS Drug Rev 1996; 2: 238–55

    CAS  Google Scholar 

  12. Emmerling MR, Schwarz RD, Spiegel K, et al. New perspectives on developing muscarinic agonists for treating Alzheimer’s disease [database]. Alzheimer’s Dis 1997; 2 (4)

  13. Svensson AL, Alafuzoff I, Nordberg A. Characterization of muscarinic receptor subtypes in Alzheimer and control brain cortices by selective muscarinic antagonists. Brain Res 1992; 596: 142–8

    PubMed  CAS  Google Scholar 

  14. Fisher A, editor. Muscarinic agonists and Alzheimer’s disease. Austin (TX): RG Landes Company, Medical Intelligence Unit, 1996

    Google Scholar 

  15. Harrison PJ, Barton AJL, McDonald B, et al. Alzheimer’s disease: specific increases in a G-protein subunit (Gsα) mRNA in hippocampal and cortical neurons. Mol Brain Res 1991; 10: 71–81

    PubMed  CAS  Google Scholar 

  16. Gurwitz D, Haring R, Heldman E, et al. Discrete activation of transduction pathways associated with acetylcholine M1 receptor by several muscarinic ligands. Eur J Pharmacol (Mol Pharmacol) 1994; 267: 21–31

    CAS  Google Scholar 

  17. Nitsch RN, Slack BE, Wurtman RJ, et al. Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 1992; 258: 304–7

    PubMed  CAS  Google Scholar 

  18. Bowen DM, Francis PT, Chessell IP, et al. Neurotransmission — the link integrating Alzheimer research? TINS 1994; 17: 149–50

    PubMed  CAS  Google Scholar 

  19. Buxbaum JD, Oishi M, Chen HI, et al. Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer β/A4 amyloid protein precursor. Proc Natl Acad Sci U S A 1992; 89: 10075–8

    PubMed  CAS  Google Scholar 

  20. Lahiri DK, Nall C, Farlow MR. The cholinergic agonist carbachol reduces intracellular β-amyloid precursor protein in PC12 and C6 cells. Biochem Int 1992; 28: 853–60

    PubMed  CAS  Google Scholar 

  21. Haring R, Gurwitz D, Barg J, et al. Amyloid precursor protein secretion via muscarinic receptors: reduced desensitization using the M1-selective agonist AF102B. Biochem Biophys Res Comm 1994; 203: 652–8

    PubMed  CAS  Google Scholar 

  22. Eckols K, Bymaster FP, Mitch CH, et al. The muscarinic M1 agonist xanomeline increases soluble amyloid precursor protein release from CHO M1 cells. Life Sci 1995; 57: 1183–90

    PubMed  CAS  Google Scholar 

  23. Haring H, Fisher A, Marciano D, et al. Mitogen-activated kinase-dependent and protein kinase C-dependent pathways link the M1 muscarinic receptor to β-amyloid precursor protein secretion. J Neurochem 1998; 71: 2094–103

    PubMed  CAS  Google Scholar 

  24. Hung AY, Haass C, Nitsch RT, et al. Activation of protein kinase C inhibits cellular production of the amyloid β-protein. J Biolog Chem 1993; 268: 22959–62

    CAS  Google Scholar 

  25. Wolf BA, Werfkin AM, Jolly YC, et al. Muscarinic regulation of Alzheimer’s disease amyloid precursor protein secretion and amyloid beta-protein production in human neuronal NT2N cells. J Biol Chem 1995; 270: 4916–22

    PubMed  CAS  Google Scholar 

  26. Checler F. Processing of the β-Amyloid precursor protein and its regulation in Alzheimer’s disease. J Neurochem 1995; 65: 1431–44

    PubMed  CAS  Google Scholar 

  27. Pinkas-Kramarski R, Stein R, Lindenboim L, et al. Growth factor-like effects mediated by muscarinic receptors in PC12M1 cells. J Neurochem 1992; 59: 2158–66

    PubMed  CAS  Google Scholar 

  28. Gurwitz D, Haring R, Pinkas-Kramarski R, et al. NGF-dependent neurotrophic-like effects of AF102B, an M1 muscarinic agonist, in PC12M1 cells. NeuroReport 1995; 6: 485–8

    PubMed  CAS  Google Scholar 

  29. Mount HTJ, Dreyfus CF, Black IB, et al. Muscarinic stimulation promotes cultured Purkinje cell survival: a role for acetylcholine in cerebellar development? J Neurochem 1994; 63: 2065–73

    PubMed  CAS  Google Scholar 

  30. Alberch J, Gurwitz D, Fisher A, et al. Novel muscarinic M1 receptor agonists promote survival of CNS neurons in primary cell culture. Soc Neurosci Abstr 1995; 21: 2040

    Google Scholar 

  31. Haring R, Gurwitz D, Barg J, et al. NGF promotes amyloid protein secretion via muscarinic receptor activation. Biochem Biophys Res Comm 1995; 213: 15–23

    PubMed  CAS  Google Scholar 

  32. Sadot E, Gurwitz D, Barg J, et al. Activation of M1-muscarinic acetylcholine receptor regulates tau phosphorylation in transfected PC12 cells. J Neurochem 1996; 66: 877–80

    PubMed  CAS  Google Scholar 

  33. Forlenza O, Spink J, Oleson O, et al. Muscarinic agonists reduce tau phosphorylation in transfected cells and in neurons [abstract]. Neurobiol Aging 1998; 19: S218

    Google Scholar 

  34. Genis I, Fisher A, Michaelson DM. Site-specific dephosphorylation of tau of apolipoprotein E-deficient and control mice by M1 muscarinic agonist treatment. J Neurochem 1999; 12(1): 206–13

    Google Scholar 

  35. Lindenboim L, Pinkas-Kramarski R, Sokolovsky M, et al. Activation of muscarinic receptors inhibits apoptosis in PC12M1 cells. J Neurochem 1995; 64: 2491–9

    PubMed  CAS  Google Scholar 

  36. von der Kammer H, Mayhaus M, Albrecht C, et al. Muscarinic acetylcholine receptors activate expression of the Egr gene family of transcription factors. J Biolog Chem 1998; 273(23): 14538–44

    Google Scholar 

  37. Nitsch RM, Rossner S, Albrecht C, et al. Muscarinic acetylcholine receptors activate the acetylcholinesterase gene promoter. J Physiol (Paris) 1998; 92(3–4): 257–64

    CAS  Google Scholar 

  38. Schwarz RD. Muscarinic receptor agonists under development for the treatment of Alzheimer’s disease. Alzheimer’s Dis 1997; 2: 459–65

    Google Scholar 

  39. Parnetti L, Senin U, Mecocci P. Cognitive enhancement therapy for Alzheimer’s disease. Drugs 1997; 53: 752–68

    PubMed  CAS  Google Scholar 

  40. Eglen RM, Watson N. Selective muscarinic receptor agonists and antagonists. Pharmacol Toxicol 1996; 78: 59–8

    PubMed  CAS  Google Scholar 

  41. Moltzen EK, Bjornholm B. Medicinal chemistry of muscarinic agonists: developments since 1990. Drugs Future 1995; 20: 37–54

    Google Scholar 

  42. Hulme EC, Birdsall NJM, Buckley NJ. Muscarinic receptor subtypes. Ann Rev Pharmacol Toxicol 1990; 30: 633–73

    CAS  Google Scholar 

  43. Caulfield MP, Birdsall NJM. International Union of Pharmacology. XVII. Classification of Muscarinic Acetylcholine Receptors 1998; 50(2): 279–90

    CAS  Google Scholar 

  44. Bymaster EP, Shannon HE, Mitch CH, et al. Xanomeline: pre-clinical and clinical pharmacology of an M1 muscarinic agonist. In: Fisher A, editor. Muscarinic agonists and Alzheimer’s disease. Austin (TX): RG Landes Company, Medical Intelligence Unit, 1996: 155–84

    Google Scholar 

  45. Falcone JF, Bymaster FP, Butler T, et al. Determination of the intrinsic functional muscarinic activity of xanomeline. Subtypes of muscarinic receptors. 8th International Symposium; 1998 Aug 25–29; Danvers (MA), USA

  46. Bymaster FP, Whitesitt CA, Shannon HE, et al. Xanomeline: a selective muscarinic agonist for the treatment of Alzheimer’s disease. Drug Develop Res 1997; 40: 158–70

    CAS  Google Scholar 

  47. Freedman SB, Patel S, Harley EA, et al. L-687,306: a functionally selective and potent muscarinic M1 receptor agonist. Eur J Pharmacol 1992; 215: 135–6

    PubMed  CAS  Google Scholar 

  48. Freedman SB, Dawson GR, Iversen LL, et al. The design of novel muscarinic partial agonists that have functional selectivity in pharmacological preparations in vitro and reduced side-effect profile in vitro and reduced side-effect profile in vivo. Life Sci 1993; 52: 489–95

    PubMed  CAS  Google Scholar 

  49. Meier E, Frederiksen K, Nielsen M, et al. Pharmacological in vitro characterization of the arecoline bioisostere, Lu 25-109-T, a muscarinic compound with M1-agonistic and M2/M3-antagonistic properties. Drug Develop Res 1997; 40: 1–16

    CAS  Google Scholar 

  50. Muller D, Wiegmann H, Langer U, et al. Lu 25-109, a combined ml agonist and m2 antagonist, modulates regulated processing of the amyloid precursor protein of Alzheimer’s disease. J Neural Transm 1998; 105: 1029–43

    PubMed  CAS  Google Scholar 

  51. Heisterberg J, Forrest M. Lu 25-109 — a new muscarinic agent. Neurobiol Aging 1996; Suppl. 17: S139

  52. Sramek JJ, Forrest M, Mengel H, et al. A bridging study of LU 25-109 in patients with probable Alzheimer’s disease. Life Sci 1998; 62: 195–202

    PubMed  CAS  Google Scholar 

  53. Forest’s M1 agonist in Alzheimer’s disease fails. SCRIP 1998 Aug 26: 16

    Google Scholar 

  54. Davis R, Raby C, Callahan MJ, et al. Subtype selective muscarinic agonists: potential therapeutic agents for Alzheimer’s disease. Prog Brain Res 1993; 98: 439–45

    PubMed  CAS  Google Scholar 

  55. Tecle H, Lauffer DJ, Mirzadegan T, et al. Synthesis and SAR of bulky 1-azabicyclo[2.2.1]-3-one oximes as muscarinic receptor subtype selective agonists. Life Sci 1993; 52: 505–11

    PubMed  CAS  Google Scholar 

  56. Jaen J, Barrett S, Brann M, et al. In vitro and in vivo evaluation of the subtype-selective muscarinic agonist PD 151832. Life Sci 1995; 56: 845–52

    PubMed  CAS  Google Scholar 

  57. Messer WS Jr, Abuh YF, Ryan K, et al. Tetrahydropyrimidine derivatives display functional selectivity for M1 muscarinic receptors in brain. Drug Develop Res 1997; 40: 171–84

    CAS  Google Scholar 

  58. Shapiro G, Floersheim P, Boelsterli J, et al. Muscarinic activity of the thiolactone, lactam, lactol and thio analogues of pilocarpine and a hypothetical model for the binding of agonists to the M1 receptors. J Med Chem 1992; 35: 15–27

    PubMed  CAS  Google Scholar 

  59. Enz A, Boddeke H, Sauter A, et al. SDZ ENS 163 a novel pilocarpine like drug: pharmacological in vitro and in vivo profile. Life Sci 1993; 52(5–6): 513–20

    PubMed  CAS  Google Scholar 

  60. Wanibuchi F, Konishi T, Harada M, et al. Pharmacological studies on novel muscarinic agonists, 1-oxa-8-azaspiro[4.5]decane derivatives, YM796 and YM 954. Eur J Pharmacol 1990; 187: 479–86

    PubMed  CAS  Google Scholar 

  61. Wu ES, Kover A. Spiro-ixoazolidine derivatives as cholinergic agents. US patent 5,073, 560. 1991 Dec 17

  62. Sabb AL, Stein RP, Vogel RL, et al. WAY-131256 is an orally active, efficacious, and in-vivo functionally selective M1 agonist. Drug Develop Res 1997; 40: 185–92

    CAS  Google Scholar 

  63. Loudon JM, Bromidge SM, Brown F, et al. SB 202026: a novel muscarinic partial agonist with functional selectivity for M1 receptors. J Pharmacol Exp Ther 1997; 283: 1059–68

    PubMed  CAS  Google Scholar 

  64. Kumar R, Orgogozo J. Efficacy and safety of SB 202026 as a symptomatic treatment for Alzheimer’s disease. In: Iqbal K, Winblad B, Nishimura T, et al., editors. Alzheimer’s disease: biology, diagnosis and therapeutics. New York (NY): John Wiley and Sons, 1997: 677–85

    Google Scholar 

  65. Ensinger HA, Bechtel WD, Birke FW, et al. WAL 2014 FU (Talsaclidine): a preferentially neuron activating muscarinic agonist for the treatment of Alzheimer’s disease. Drug Develop Res 1997; 40: 144–57

    CAS  Google Scholar 

  66. Adamus WS, Leonard JP, Troger W. Phase I clinical trials with WAL 2014, a new muscarinic agonist for the treatment of Alzheimer’s disease. Life Sci 1995; 56: 883–90

    PubMed  CAS  Google Scholar 

  67. Fisher A, Brandeis R, Pittel Z, et al. (+/−)Cis-2-methyl-spiro (1,3-oxathiolane-5,3′) quinuclidine (AF102B): a new M1 agonist attenuates cognitive dysfunctions in AF64A-treated rats. Neurosci Lett 1989; 102: 325–31

    PubMed  CAS  Google Scholar 

  68. Fisher A, Brandeis R, Karton Y, et al. Cis-2-methyl-spiro(1,3-oxathiolane-5,3′) quinuclidine an M1 selective cholinergic agonist attenuates cognitive dysfunctions in an animal model of Alzheimer’s disease. J Pharmacol Exp Ther 1991; 257: 392–403

    PubMed  CAS  Google Scholar 

  69. Fisher A, Gurwitz D, Barak D, et al. Rigid analogs of acetylcholine can be M1-selective agonists: implications for a rational treatment strategy in Alzheimer’s disease. Biorg Med Chem Lett 1992; 2: 839–44

    CAS  Google Scholar 

  70. Fisher A, Karton Y, Heldman E, et al. Progress in medicinal chemistry of novel selective muscarinic agonists. Drug Des Discov 1993; 9: 221–35

    PubMed  CAS  Google Scholar 

  71. Brandeis R, Sapir M, Hafif N, et al. AF150(S): a new functionally selective M1 agonist improves cognitive performance in rats. Pharmacol Biochem Behav 1995; 51: 667–74

    PubMed  CAS  Google Scholar 

  72. Fisher A, Brandeis R, Chapman S. M1 muscarinic agonist treatment reverses cognitive and cholinergic impairments of apolipoprotein E-deficient mice. J Neurochem 1998; 70: 1991–7

    PubMed  CAS  Google Scholar 

  73. Chapman S, Fisher A, Weinstock M, et al. The effects of the acetylcholinesterase inhibitor ENA713 and the M1 agonist AF150(S) on apolipoprotein E deficient mice. J Physiol (Paris) 1998; 92: 299–303

    CAS  Google Scholar 

  74. McKinney A, Anderson D, Vella-Rountree L. Different agonist-receptor active conformations for rat brain M1 and M2 muscarinic receptors that are separately coupled to two biochemical effector systems. Mol Pharmacol 1988; 35: 39–47

    Google Scholar 

  75. Ono S, Saito Y, Ohgane N, et al. Heterogeneity of muscarinic autoreceptors and heteroreceptors in the rat brain: effects of a novel M1 agonist, AF102B. Eur J Pharmacol 1989; 155: 77–84

    Google Scholar 

  76. Mochida S, Mizobe F, Fisher A, et al. Dual synaptic effects of activating M1-receptors, in superior cervical ganglia of rabbits. Brain Res 1988; 455(1): 9–17

    PubMed  CAS  Google Scholar 

  77. Mattson MP, Barger SW, Cheng B, et al. β-Amyloid precursor protein metabolites and loss of neuronal Ca2+ homeostasis in Alzheimer’s disease. TINS 1993; 16: 409–14

    PubMed  CAS  Google Scholar 

  78. Nitsch RM. Muscarinic receptors regulate amyloid precursor protein processing. In: Fisher A, editor. Muscarinic agonists and Alzheimer’s Disease. Austin (TX): RG Landes Company, Medical Intelligence Unit, 1996: 45–54

    Google Scholar 

  79. Muller DM, Mendia K, Farber SA. Muscarinic M1 receptor agonists increase the secretion of the amyloid precursor protein ectodomain. Life Sci 1997; 60: 985–91

    PubMed  CAS  Google Scholar 

  80. Gray C, Hawkins J, Clark MSG, et al. SB 202026: a functionally M1 selective partial agonist alters processing of amyloid precursor protein at the cell surface [abstract]. Neurobiol Aging 1996; 17 Suppl.: 118

    Google Scholar 

  81. Pittel Z, Heldman E, Barg J, et al. Muscarinic control of amyloid precursor protein secretion in rat cerebral cortex and cerebellum. Brain Res 1996; 742: 299–304

    PubMed  CAS  Google Scholar 

  82. Fisher A, Brandeis R, Haring R, et al. Novel M1 muscarinic agonists in treatment and delaying the progression of Alzheimer’s disease: a unifying hypothesis. J Physiol (Paris) 1998; 92: 337–40

    CAS  Google Scholar 

  83. Farber SA, Nitsch RM, Schulz JG, et al. Regulated secretion of β-amyloid precursor protein in rat brain. JNeurosci 1995; 15: 7442–51

    CAS  Google Scholar 

  84. Growdon JH. Muscarinic agonists in Alzheimer’s disease. Life Sci 1997; 60: 993–8

    PubMed  CAS  Google Scholar 

  85. Lee VM-Y, Balin BJ, Otvos L, et al. A68: a major subunit of paired helical filaments and derivatized forms of normal tau. Science 1991; 251: 675–8

    PubMed  CAS  Google Scholar 

  86. Gordon I, Grauer E, Genis I, et al. Memory deficits and cholinergic impairments in apolipoprotein E-deficient mice. Neurosci Lett 1995; 199: 1–4

    PubMed  CAS  Google Scholar 

  87. Nakahara N, Iga Y, Mizobe F, et al. Amelioration of experimental amnesia (passive avoidance failure) in rodents by the selective M1 agonist AF102B. Jpn J Pharmacol 1988; 48: 502–6

    PubMed  CAS  Google Scholar 

  88. Nakahara N, Iga Y, Saito Y, et al. Beneficial effects of FKS-508 (AF102B), a selective M1 muscarinic agonist, on the impaired working memory in AF64A-treated rats. Jpn J Pharmacol 1989; 51: 539–47

    PubMed  CAS  Google Scholar 

  89. Brandeis R, Dachir S, Sapir M, et al. Reversal of age-related cognitive impairments by an M1 cholinergic agonist — AF102B. Pharmacol Biochem Behav 1990; 36: 89–95

    PubMed  CAS  Google Scholar 

  90. O’Neil J, Fitten LJ, Siembieda D, et al. Effects of AF102B and tacrine on delayed match-to-sample in monkeys. Prog Neuropsychopharmacol Biol Psychiatry 1998; 22: 665–78

    Google Scholar 

  91. Vincent GP, Sepinwall J. AF102B, a novel M1 agonist, enhanced spatial learning in C57BL/10 mice with a long duration of action. Brain Res 1992; 597: 264–8

    PubMed  CAS  Google Scholar 

  92. Roses AD. Apolipoprotein E affects the rate of Alzheimer disease expression: beta-amyloid burden is of secondary consequence dependent on APOE genotype and duration of disease. J Neuropathol Exp Neurol 1994; 53: 429–37

    PubMed  CAS  Google Scholar 

  93. Poirier J, Delisle MC, Quirion R, et al. Apolipoprotein E4 allele as a predictor of cholinergic deficits and treatment outcome in Alzheimer disease. Proc Natl Acad Sci U S A 1995; 92(26): 12260–4

    PubMed  CAS  Google Scholar 

  94. Davis KL, Hollander, E, Davidson M, et al. Induction of depression with oxotremorine in patients with Alzheimer’s disease. Am J Psychiatry 1987; 144: 468–71

    PubMed  CAS  Google Scholar 

  95. Spiegel R. Cholinergic drugs, affective disorders and dementia: problems of clinical research. Acta Psychiatr Scand 1991; 366 Suppl.: 66–9

    CAS  Google Scholar 

  96. Penn RD, Martin EM, Wilson RS, et al. Intraventricular bethanechol infusion for Alzheimer’s disease. Neurology 1988; 38: 219–22

    PubMed  CAS  Google Scholar 

  97. Soncrant TT, Raffaele KC, Asthana S, et al. Memory improvement without toxicity during chronic, low dose intravenous arecoline in Alzheimer’s disease. Psychopharmacol 1993; 112: 421–7

    CAS  Google Scholar 

  98. Sramek JJ, Cutler NR, Hurley DJ, et al. The utility of salivary amylase as an evaluation of M3 muscarinic agonist activity in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 1995; 19: 85–91

    PubMed  CAS  Google Scholar 

  99. Farde L, Suhara T, Halldin C, et al. PET study of the M1-Agonists [11C]xanomeline and [11C]butylthio-TZTP in monkey and man. Dementia 1996; 7: 187–95

    PubMed  CAS  Google Scholar 

  100. Delong AF, Bonate PL, Gillespie T, et al. Absorption distribution, metabolism and elimination of radiolabeled xanomeline in healthy male subjects. In: Hanin I, Yoshida M, Fisher A, editors. Alzheimer’s and Parkinson diseases: recent developments. New York (NY): Plenum Press, 1995: 463–8

    Google Scholar 

  101. Bodick NC, Offen WW, Levey AI, et al. Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch Neurol 1997; 54: 465–73

    PubMed  CAS  Google Scholar 

  102. Lilly to develop Alzheimer’s patch. SCRIP 1996; 2144: 22 [online]. Available from: URL: http://www.alzforum.org/members/research/drugs/xanomeline.html [Accessed 1999 Jun 20]

  103. Medina A, Bodick N, Goldberger AL, et al. Effects of central muscarinic-1 receptor stimulation on blood pressure regulation. Hypertension 1997; 29: 828–34

    PubMed  CAS  Google Scholar 

  104. Marketletter. April 27, 1998; Alzheimer Research Forum [online]. Available from: URL: http://www.alzforum.org/members/research/drugs/memric.html [Accessed 1999 Jun 20]

  105. Hoover T, Breslin E, Bridging study in the clinical development of milameline (CI-979/RU 35926), a novel muscarinic agonist [abstract]. Neurobiol Aging 1996; Suppl. 17: S139

  106. Alzheimer Research Forum [online]. Available from: URL: alzforum.org/members/research/drugs/milameline.html [Accessed 1999 Jun 20]

  107. Davis RE, Doyle PD, Carroll RT, et al. Cholinergic therapies for Alzheimer’s disease. Palliative or disease altering? Arneimittelforschung 1995; 45: 425–31

    CAS  Google Scholar 

  108. Sramek JJ, Sedman AT, Reece PA, et al. Safety and tolerability of CI-979 in patients with Alzheimer’s disease. Life Sci 1995; 57: 503–10

    PubMed  CAS  Google Scholar 

  109. Dethloff LA, Chang T, Courtney CL. Toxicological comparison of a muscarinic agonist given to rats by gavage or in the diet. Food Chem Toxicol 1996; 34: 407–22

    PubMed  CAS  Google Scholar 

  110. Alzheimer’s disease — drug status update. ID Research Alerts 1997; 2 (8): 383-91

    Google Scholar 

  111. Sramek JJ, Hurley DJ, Wardle TS, et al. The safety and tolerance of xanomeline tartrate in patients with Alzheimer’s disease. J Clin Pharmacol 1995; 35: 800–6

    PubMed  CAS  Google Scholar 

  112. Jope RS. Cholinergic muscarinic receptor signalling by phosphoinositides signal transduction system in Alzheimer’s disease. Alzheimer’s Dis Rev 1996; 1: 2–14

    CAS  Google Scholar 

  113. Yan GM, Lin SZ, Irwin RP, et al. Activation of muscarinic cholinergic receptors blocks apoptosis of cultured cerebellar granule neurons. Mol Pharmacol 1996; 47: 257

    Google Scholar 

  114. Hellweg R, von Richthofen S, Anders D, et al. The time course of nerve growth factor content in different neuropsychiatric disease — a unifying hypothesis. J Neural Transm 1988; 105: 871–903

    Google Scholar 

  115. Nordberg A, Amberla K, Shigeta M. Long term tacrine treatment in three mild Alzheimer patients: effects on nicotinic receptors, cerebral blood flow, glucose metabolism, EEG, and cognitive abilities. Alzheimer Dis Assoc Disord 1998; 12: 228–37

    PubMed  CAS  Google Scholar 

  116. Perry E, Court J, Goodchild R, et al. Clinical neurochemistry: developments in dementia research based on brain bank material. J Neural Transm 1998; 105: 915–33

    PubMed  CAS  Google Scholar 

  117. Lander CJ, Celesia GG, Magnuson DJ, et al. Regional alterations in M1 muscarinic receptor-G protein coupling in Alzheimer’s disease. J Neuropath Exp Neurol 1995; 54: 783–9

    Google Scholar 

  118. Kelly JF, Furukawa K, Barger SW, et al. Amyloid β-peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons. Proc Natl Acad Sci 1996; 96: 6753–8

    Google Scholar 

  119. Jope RS, Song L, Powers RE. Cholinergic activation of phosphoinositide signalling is impaired in Alzheimer’s disease brain. Neurobiol Aging 1997; 18: 111–20

    PubMed  CAS  Google Scholar 

  120. Ferrari-DiLeo G, Mash DC, Flynn DD. Attenuation of muscarinic receptor-G-protein interaction in Alzheimer disease. Mol Chem Neuropathol 1995; 24: 69–91

    PubMed  CAS  Google Scholar 

  121. Hoshi M, Takashima A, Murayama M, et al. Nontoxic amyloid β peptide 1–42 suppresses acetylcholine synthesis. J Biol Chem 1997; 272: 2038–41

    PubMed  CAS  Google Scholar 

  122. Abe E, Casamenti F, Giovannelli L, et al. Administration of amyloid beta-peptides into the medial septum of rats decreases acetylcholine release from hippocampus in vivo. Brain Res 1994; 636: 162–4

    PubMed  CAS  Google Scholar 

  123. Walter J, Grunberg J, Capell A, et al. Proteolytic processing of the Alzheimer disease-associated presenilin-1 generates an in vivo substrate for protein kinase C. Proc Natl Acad Sci U S A 1997; 94: 5349–54

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Fisher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisher, A. Muscarinic Receptor Agonists in Alzheimer’s Disease. Mol Diag Ther 12, 197–214 (1999). https://doi.org/10.2165/00023210-199912030-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-199912030-00004

Keywords

Navigation