Skip to main content
Log in

Calcitonin — A Drug of the Past or for the Future?

Physiologic Inhibition of Bone Resorption while Sustaining Osteoclast Numbers Improves Bone Quality

  • Current Opinion
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Postmenopausal osteoporosis results from a continuous imbalance between bone resorption and bone formation, favoring bone resorption. An increasing number of treatments for osteoporosis are in development and on the market. A range of differences and similarities are found between these treatment options, and these need to be carefully evaluated before the initiation of treatment. This article summarizes data from in vitro and animal studies, as well as clinical trials, on the effect of calcitonin on bone turnover.

Calcitonin was found to exert its antiresorptive effects via directly reducing osteoclastic resorption, and thus leads to an increase in bone mineral density and bone strength. Furthermore, calcitonin appears to mainly target the most active osteoclasts, and in contrast to most other antiresorptive agents it does not reduce the number of osteoclasts. Finally, in humans, while attenuating resorption, calcitonin treatment does not interfere markedly with bone formation, in contrast to other currently available antiresorptive agents. Thus, we speculate that calcitonin treatment will lead to a continuously positive bone balance in contrast with other antiresorptive agents currently on the market and thereby, in a physiologic manner, result in improved bone quality.

Calcitonin is currently only available in injectable and nasal formulations. An oral formulation may, however, improve patient acceptance and compliance. Currently, several different routes are being pursued to identify an optimal oral formulation, of which the technology based on 5-CNAC is the most advanced. There are promising clinical data available for this formulation from both osteoarthritis and osteoporosis clinical trials, although the antifracture efficacy is not yet known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement

References

  1. Seeman E, Delmas PD. Bone quality: the material and structural basis of bone strength and fragility. N Engl J Med 2006; 354(21): 2250–61

    Article  PubMed  CAS  Google Scholar 

  2. Martin TJ, Rodan GA. Coupling of bone reesorption and formation during bone remodeling. In: Marcus R, Feldman D, Kelsey J, editors. Osteoporosis. London: Academic Press, 2001: 361–70

    Chapter  Google Scholar 

  3. Karsdal MA, Martin TJ, Bollerslev J, et al. Are nonresorbing osteoclasts sources of bone anabolic activity? J Bone Miner Res 2007; 22(4): 487–94

    Article  PubMed  CAS  Google Scholar 

  4. Eastell R. Chapter 46: Pathogenesis of postmenopausal osteoporosis. In: Favus MD, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 6th ed. Washington, DC: American Society for Bone and Mineral Research, 2006: 259–62

    Google Scholar 

  5. Harvey N, Earl S, Cooper C. Chapter 42: Epidemiology of osteoporotic fractures. In: Favus MD, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 6th ed. Washington, DC: American Society for Bone and Mineral Research, 2006: 244–8

    Google Scholar 

  6. Martin TJ, Seeman E. New mechanisms and targets in the treatment of bone fragility. Clin Sci (Lond) 2007; 112(2): 77–91

    Article  CAS  Google Scholar 

  7. Henriksen K, Tanko LB, Qvist P, et al. Assessment of osteoclast number and function: application in the development of new and improved treatment modalities for bone diseases. Osteoporos Int 2007; 18(5): 681–5

    Article  PubMed  CAS  Google Scholar 

  8. Vaananen K. Mechanism of osteoclast mediated bone resorption: rationale for the design of new therapeutics. Adv Drug Deliv Rev 2005; 57(7): 959–71

    Article  PubMed  Google Scholar 

  9. McClung MR, Lewiecki EM, Cohen SB, et al. Denosumab in postmenopausal women with low bone mineral density. N Engl J Med 2006; 354(8): 821–31

    Article  PubMed  CAS  Google Scholar 

  10. McClung MR. Inhibition of RANKL as a treatment for osteoporosis: preclinical and early clinical studies. Curr Osteoporos Rep 2006; 4(1): 28–33

    Article  PubMed  Google Scholar 

  11. Ravn P, Hosking D, Thompson D, et al. Monitoring of alendronate treatment and prediction of effect on bone mass by biochemical markers in the early postmenopausal intervention cohort study. J Clin Endocrinol Metab 1999; 84(7): 2363–8

    Article  PubMed  CAS  Google Scholar 

  12. Ravn P, Clemmesen B, Christiansen C. Biochemical markers can predict the response in bone mass during alendronate treatment in early postmenopausal women. Alendronate Osteoporosis Prevention Study Group. Bone 1999; 24(3): 237–44

    Article  PubMed  CAS  Google Scholar 

  13. Tanko LB, Bagger YZ, Alexandersen P, et al. Safety and efficacy of a novel salmon calcitonin (sCT) technology-based oral formulation in healthy postmenopausal women: acute and 3-month effects on biomarkers of bone turnover. J Bone Miner Res 2004; 19(9): 1531–8

    Article  PubMed  CAS  Google Scholar 

  14. Sexton PM, Findlay DM, Martin TJ. Calcitonin. Curr Med Chem 1999; 6(11): 1067–93

    PubMed  CAS  Google Scholar 

  15. Deftos LJ. Chapter 18: Calcitonin. In: Favus MD, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 6th ed. Washington, DC: American Society for Bone and Mineral Research, 2006: 115–7

    Google Scholar 

  16. Copp DH, Cameron EC, Cheney BA, et al. Evidence for calcitonin: a new hormone from the parathyroid that lowers blood calcium. Endocrinology 1962; 70: 638638–649

    Article  Google Scholar 

  17. Kumar MA, Foster GV, MacIntyre I. Further evidence for calcitonin: a rapid-acting hormone which lowers plasma-calcium. Lancet 1963; 35: 480–2

    Article  Google Scholar 

  18. Chambers TJ, Moore A. The sensitivity of isolated osteoclasts to morphological transformation by calcitonin. J Clin Endocrinol Metab 1983; 57(4): 819–24

    Article  PubMed  CAS  Google Scholar 

  19. Suzuki H, Nakamura I, Takahashi N, et al. Calcitonin-induced changes in the cytoskeleton are mediated by a signal pathway associated with protein kinase A in osteoclasts. Endocrinology 1996; 137(11): 4685–90

    Article  PubMed  CAS  Google Scholar 

  20. Shyu JF, Shih C, Tseng CY, et al. Calcitonin induces podosome disassembly and detachment of osteoclasts by modulating Pyk2 and Src activities. Bone 2007; 40(5): 1329–42

    Article  PubMed  CAS  Google Scholar 

  21. Sorensen MG, Henriksen K, Schaller S, et al. Characterization of osteoclasts derived from CD14+ monocytes isolated from peripheral blood. J Bone Miner Metab 2007; 25(1): 36–45

    Article  PubMed  CAS  Google Scholar 

  22. Bagger YZ, Tanko LB, Alexandersen P, et al. Oral salmon calcitonin induced suppression of urinary collagen type II degradation in postmenopausal women: a new potential treatment of osteoarthritis. Bone 2005; 37(3): 425–30

    Article  PubMed  CAS  Google Scholar 

  23. Mehta NM, Malootian A, Gilligan JP. Calcitonin for osteoporosis and bone pain. Curr Pharm Des 2003; 9(32): 2659–76

    Article  PubMed  CAS  Google Scholar 

  24. van Laere M, Ciaessens M. The treatment of reflex sympathetic dystrophy syndrome: current concepts. Acta Orthop Belg 1992; 58Suppl. 1: 259–61

    PubMed  Google Scholar 

  25. Gennari C, Agnusdei D. Calcitonins and osteoporosis. Br J Clin Pract 1994; 48(4): 196–200

    PubMed  CAS  Google Scholar 

  26. Streubel A, Siepmann J, Bodmeier R. Gastroretentive drug delivery systems. Expert Opin Drug Deliv 2006; 3(2): 217–33

    Article  PubMed  CAS  Google Scholar 

  27. Shareef MA, Khar RK, Ahuja A, et al. Colonic drug delivery: an updated review. AAPS PharmSci 2003; 5(2): E17

    Article  PubMed  Google Scholar 

  28. Van den MG. Colon drug delivery. Expert Opin Drug Deliv 2006; 3(1): 111–25

    Article  Google Scholar 

  29. Smoum R, Rubinstein A, Srebnik M. Chitosan-pentaglycine-phenylboronic acid conjugate: a potential colon-specific platform for calcitonin. Bioconjug Chem 2006; 17(4): 1000–7

    Article  PubMed  CAS  Google Scholar 

  30. Bernkop-Schnurch A, Hoffer MH, Kafedjiiski K. Thiomers for oral delivery of hydrophilic macromolecular drugs. Expert Opin Drug Deliv 2004; 1(1): 87–98

    Article  PubMed  CAS  Google Scholar 

  31. Garcia-Fuentes M, Torres D, Alonso MJ. New surface-modified lipid nanoparticles as delivery vehicles for salmon calcitonin. Int J Pharm 2005; 296(1–2): 122–32

    Article  PubMed  CAS  Google Scholar 

  32. Lamprecht A, Yamamoto H, Takeuchi H, et al. pH-sensitive microsphere delivery increases oral bioavailability of calcitonin. J Control Release 2004; 98(1): 1–9

    Article  PubMed  CAS  Google Scholar 

  33. Guggi D, Kast CE, Bernkop-Schnurch A. In vivo evaluation of an oral salmon calcitonin-delivery system based on a thiolated chitosan carrier matrix. Pharm Res 2003; 20(12): 1989–94

    Article  PubMed  CAS  Google Scholar 

  34. Wang J, Chow D, Heiati H, et al. Reversible lipidization for the oral delivery of salmon calcitonin. J Control Release 2003; 88(3): 369–80

    Article  PubMed  CAS  Google Scholar 

  35. Sakuma S, Suzuki N, Sudo R, et al. Optimized chemical structure of nanoparticles as carriers for oral delivery of salmon calcitonin. Int J Pharm 2002; 239(1–2): 185–95

    Article  PubMed  CAS  Google Scholar 

  36. Lee YH, Sinko PJ. Oral delivery of salmon calcitonin. Adv Drug Deliv Rev 2000; 42(3): 225–38

    Article  PubMed  CAS  Google Scholar 

  37. Torres-Lugo M, Peppas NA. Transmucosal delivery systems for calcitonin: a review. Biomaterials 2000; 21(12): 1191–6

    Article  PubMed  CAS  Google Scholar 

  38. Malkov D, Angelo R, Wang HZ, et al. Oral delivery of insulin with the eligen technology: mechanistic studies. Curr Drug Deliv 2005; 2(2): 191–7

    Article  PubMed  CAS  Google Scholar 

  39. Schlemmer A, Hassager C, Jensen SB, et al. Marked diurnal variation in urinary excretion of pyridinium cross-links in premenopausal women. J Clin Endocrinol Metab 1992; 74(3): 476–80

    Article  PubMed  CAS  Google Scholar 

  40. Bjarnason NH, Henriksen EE, Alexandersen P, et al. Mechanism of circadian variation in bone resorption. Bone 2002; 30(1): 307–13

    Article  PubMed  CAS  Google Scholar 

  41. Henriksen DB, Alexandersen P, Byrjalsen I, et al. Reduction of nocturnal rise in bone resorption by subcutaneous GLP-2. Bone 2004; 34(1): 140–7

    Article  PubMed  CAS  Google Scholar 

  42. Christgau S. Circadian variation in serum CrossLaps concentration is reduced in fasting individuals. Clin Chem 2000; 46(3): 431

    PubMed  CAS  Google Scholar 

  43. Gertz BJ, Clemens JD, Holland SD, et al. Application of a new serum assay for type I collagen cross-linked N-telopeptides: assessment of diurnal changes in bone turnover with and without alendronate treatment. Calcif Tissue Int 1998; 63(2): 102–6

    Article  PubMed  CAS  Google Scholar 

  44. Ikegame M, Ejiri S, Ozawa H. Calcitonin-induced change in serum calcium levels and its relationship to osteoclast morphology and number of calcitonin receptors. Bone 2004; 35(1): 27–33

    Article  PubMed  CAS  Google Scholar 

  45. Chesnut III CH, Majumdar S, Newitt DC, et al. Effects of salmon calcitonin on trabecular microarchitecture as determined by magnetic resonance imaging: results from the QUEST study. J Bone Miner Res 2005; 20(9): 1548–61

    Article  PubMed  CAS  Google Scholar 

  46. Jiang Y, Zhao J, Geusens P, et al. Femoral neck trabecular microstructure in ovariectomized ewes treated with calcitonin: MRI microscopic evaluation. J Bone Miner Res 2005; 20(1): 125–30

    Article  PubMed  Google Scholar 

  47. Gonzalez D, Ghiringhelli G, Mautalen C. Acute antiosteoclastic effect of salmon calcitonin in osteoporotic women. Calcif Tissue Int 1986; 38(2): 71–5

    Article  PubMed  CAS  Google Scholar 

  48. Overgaard K, Christiansen C. Long-term treatment of established osteoporosis with intranasal calcitonin. Calcif Tissue Int 1991; 49 Suppl.: S60–3

    Article  PubMed  Google Scholar 

  49. Chesnut III CH, Silverman S, Andriano K, et al. A randomized trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis: the prevent recurrence of osteoporotic fractures study. PROOF Study Group. Am J Med 2000; 109(4): 267–76

    Article  PubMed  CAS  Google Scholar 

  50. Dempster DW. Chapter 2: Anatomy and functions of the adult skeleton. In: Favus MD, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 6th ed. Washington, DC: American Society for Bone and Mineral Research, 2006: 7–11

    Google Scholar 

  51. Hattner R, Epker BN, Frost HM. Suggested sequential mode of control of changes in cell behaviour in adult bone remodelling. Nature 1965; 206(983): 489–90

    Article  PubMed  CAS  Google Scholar 

  52. Takahashi H, Epker B, Frost HM. Resorption precedes formative activity. Surg Forum 1964; 15: 437–8

    PubMed  CAS  Google Scholar 

  53. Sarnsethsiri P, Hitt OK, Eyring EJ, et al. Tetracycline-based study of bone dynamics in pycnodysostosis. Clin Orthop Relat Res 1971; 74: 301–12

    Article  PubMed  CAS  Google Scholar 

  54. Karsdal MA, Qvist P, Christiansen C, et al. Optimising antiresorptive therapies in postmenopausal women: why do we need to give due consideration to the degree of suppression? Drugs 2006; 66(15): 1909–18

    Article  PubMed  Google Scholar 

  55. Bjarnason NH, Sarkar S, Duong T, et al. Six and twelve month changes in bone turnover are related to reduction in vertebral fracture risk during 3 years of raloxifene treatment in postmenopausal osteoporosis. Osteoporos Int 2001; 12(11): 922–30

    Article  PubMed  CAS  Google Scholar 

  56. Kung AW, Pasion EG, Sofiyan M, et al. A comparison of teriparatide and calcitonin therapy in postmenopausal Asian women with osteoporosis: a 6-month study. Curr Med Res Opin 2006; 22(5): 929–37

    Article  PubMed  CAS  Google Scholar 

  57. Hwang JS, Tu ST, Yang TS, et al. Teriparatide vs calcitonin in the treatment of Asian postmenopausal women with established osteoporosis. Osteoporos Int 2006; 17(3): 373–8

    Article  PubMed  CAS  Google Scholar 

  58. Trovas GP, Lyritis GP, Galanos A, et al. A randomized trial of nasal spray salmon calcitonin in men with idiopathic osteoporosis: effects on bone mineral density and bone markers. J Bone Miner Res 2002; 17(3): 521–7

    Article  PubMed  CAS  Google Scholar 

  59. Karsdal MA, Henriksen K. Osteoclasts control osteoblast activity. BoneKEy-Osteovision 2007; 4(1): 19–24

    Article  Google Scholar 

  60. Durie BG, Katz M, Crowley J. Osteonecrosis of the jaw and bisphosphonates. N Engl J Med 2005; 353(1): 99–102

    Article  PubMed  CAS  Google Scholar 

  61. Khosla S, Burr D, Cauley J, et al. Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 2007; 22(10): 1479–91

    Article  PubMed  Google Scholar 

  62. Zaidi M, Inzerillo AM, Moonga BS, et al. Forty years of calcitonin: where are we now? A tribute to the work of Iain Macintyre, FRS. Bone 2002; 30(5): 655–63

    Article  PubMed  CAS  Google Scholar 

  63. Cranney A, Tugwell P, Zytaruk N, et al. Meta-analyses of therapies for postmenopausal osteoporosis: VI. Meta-analysis of calcitonin for the treatment of postmenopausal osteoporosis. Endocr Rev 2002; 23(4): 540–51

    Article  PubMed  CAS  Google Scholar 

  64. Heersche JN. Calcitonin effects on osteoclastic resorption: the ‘escape phenomenon’ revisited. Bone Miner 1992; 16(3): 174–7

    Article  PubMed  CAS  Google Scholar 

  65. Cummings SR, Chapurlat RD. What PROOF proves about calcitonin and clinical trials. Am J Med 2000; 109(4): 330–1

    Article  PubMed  CAS  Google Scholar 

  66. Overgaard K, Hansen MA, Jensen SB, et al. Effect of salcatonin given intranasally on bone mass and fracture rates in established osteoporosis: a dose-response study. BMJ 1992; 305(6853): 556–61

    Article  PubMed  CAS  Google Scholar 

  67. Rico H, Hernandez ER, Revilla M, et al. Salmon calcitonin reduces vertebral fracture rate in postmenopausal crush fracture syndrome. Bone Miner 1992; 16(2): 131–8

    Article  PubMed  CAS  Google Scholar 

  68. Rico H, Revilla M, Hernandez ER, et al. Total and regional bone mineral content and fracture rate in postmenopausal osteoporosis treated with salmon calcitonin: a prospective study. Calcif Tissue Int 1995; 56(3): 181–5

    Article  PubMed  CAS  Google Scholar 

  69. Kanis JA, McCloskey EV. Effect of calcitonin on vertebral and other fractures. QJM 1999; 92(3): 143–9

    Article  PubMed  CAS  Google Scholar 

  70. Watts NB, Cooper C, Lindsay R, et al. Relationship between changes in bone mineral density and vertebral fracture risk associated with risedronate: greater increases in bone mineral density do not relate to greater decreases in fracture risk. J Clin Densitom 2004; 7(3): 255–61

    Article  PubMed  Google Scholar 

  71. Sarkar S, Mitlak BH, Wong M, et al. Relationships between bone mineral density and incident vertebral fracture risk with raloxifene therapy. J Bone Miner Res 2002; 17(1): 1–10

    Article  PubMed  CAS  Google Scholar 

  72. Cummings SR, Karpf DB, Harris F, et al. Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med 2002; 112(4): 281–9

    Article  PubMed  CAS  Google Scholar 

  73. Ettinger B, Black DM, Mitlak BH, et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA 1999; 282(7): 637–45

    Article  PubMed  CAS  Google Scholar 

  74. Byrjalsen I, Leeming DJ, Qvist P, et al. Bone turnover and bone collagen maturation in osteoporosis: effects of antiresorptive therapies. Osteoporos Int 2008; 19(3): 339–48

    Article  PubMed  CAS  Google Scholar 

  75. Karsdal MA, Byrjalsen I, Leeming DJ, et al. Bone turnover and quality: how discrepancies in BMD changes and fracture risk may be explained [abstract no. W478]. J Bone Miner Res 2007; 22 Suppl. 1: W478

    Google Scholar 

  76. Knopp JA, Diner BM, Blitz M, et al. Calcitonin for treating acute pain of osteoporotic vertebral compression fractures: a systematic review of randomized, controlled trials. Osteoporos Int 2005; 16(10): 1281–90

    Article  PubMed  CAS  Google Scholar 

  77. Blau LA, Hoehns JD. Analgesic efficacy of calcitonin for vertebral fracture pain. Ann Pharmacother 2003; 37(4): 564–70

    Article  PubMed  CAS  Google Scholar 

  78. Azria M. Possible mechanisms of the analgesic action of calcitonin. Bone 2002; 30(5 Suppl.): 80S–3S

    Article  PubMed  CAS  Google Scholar 

  79. Azria M. The calcitonins. In: Pitter R, Kälin HB, editors. Physiology and pharmacology. 1st ed. Basel: Karger Press, 1989: 2–145

    Google Scholar 

  80. Silverman SL, Azria M. The analgesic role of calcitonin following osteoporotic fracture. Osteoporos Int 2002; 13(11): 858–67

    Article  PubMed  CAS  Google Scholar 

  81. Gennari C. Analgesic effect of calcitonin in osteoporosis. Bone 2002; 30(5 Suppl.): 67S–70S

    Article  PubMed  CAS  Google Scholar 

  82. Welch SP, Cooper CW, Dewey WL. Antinociceptive activity of salmon calcitonin injected intraventricularly in mice: modulation of morphine antinociception. J Pharmacol Exp Ther 1986; 237(1): 54–8

    PubMed  CAS  Google Scholar 

  83. Yamamoto M, Tachikawa S, Maeno H. Effects of porcine calcitonin on behavioral and electrophysiological responses elicited by electrical stimulation of the tooth pulp in rabbits. Pharmacology 1982; 24(6): 337–45

    Article  PubMed  CAS  Google Scholar 

  84. Braga P, Ferri S, Santagostino A, et al. Lack of opiate receptor involvement in centrally induced calcitonin analgesia. Life Sci 1978; 22(11): 971–7

    Article  PubMed  CAS  Google Scholar 

  85. Rohner J, Planche D. Mechanism of the analgesic effect of calcitonin evidence for a twofold effect: morphine-like and cortisone-like. Clin Rheumatol 1985; 4(2): 218–9

    Article  PubMed  CAS  Google Scholar 

  86. Martin MI, Goicoechea C, Ormazabal MJ, et al. Analgesic effect of two calcitonins and in vitro interaction with opioids. Gen Pharmacol 1995; 26(3): 641–7

    Article  PubMed  CAS  Google Scholar 

  87. Lyritis GP, Trovas G. Analgesic effects of calcitonin. Bone 2002; 30(5 Suppl.): 71S–4S

    Article  PubMed  CAS  Google Scholar 

  88. Plosker GL, McTavish D. Intranasal salcatonin (salmon calcitonin): a review of its pharmacological properties and role in the management of postmenopausal osteoporosis. Drugs Aging 1996; 8(5): 378–400

    Article  PubMed  CAS  Google Scholar 

  89. Braga PC. Calcitonin and its antinociceptive activity: animal and human investigations 1975-1992. Agents Actions 1994; 41(3–4): 121–31

    Article  PubMed  CAS  Google Scholar 

  90. Buclin T, Cosma RM, Burckhardt P, et al. Bioavailability and biological efficacy of a new oral formulation of salmon calcitonin in healthy volunteers. J Bone Miner Res 2002; 17(8): 1478–85

    Article  PubMed  CAS  Google Scholar 

  91. Wallach S, Rousseau G, Martin L, et al. Effects of calcitonin on animal and in vitro models of skeletal metabolism. Bone 1999; 25(5): 509–16

    Article  PubMed  CAS  Google Scholar 

  92. Karsdal MA, Tanko LB, Riis BJ, et al. Calcitonin is involved in cartilage homeo-stasis: is calcitonin a treatment for OA? Osteoarthritis Cartilage 2006; 14(7): 617–24

    Article  PubMed  CAS  Google Scholar 

  93. Manicourt DH, Azria M, Mindeholm L, et al. Oral salmon calcitonin reduces Lequesne’s algofunctional index scores and decreases urinary and serum levels of biomarkers of joint metabolism in knee osteoarthritis. Arthritis Rheum 2006; 54(10): 3205–11

    Article  PubMed  CAS  Google Scholar 

  94. Karsdal MA, Sondergaard BC, Arnold M, et al. Calcitonin affects both bone and cartilage: a dual action treatment for osteoarthritis? Ann N Y Acad Sci 2007; 1117: 181–95

    Article  PubMed  CAS  Google Scholar 

  95. Sondergaard BC, Wulf H, Henriksen K, et al. Calcitonin directly attenuates collagen type II degradation by inhibition of matrix metalloproteinase expression and activity in articular chondrocytes. Osteoarthritis Cartilage 2006; 14(8): 759–68

    Article  PubMed  CAS  Google Scholar 

  96. Mancini L, Paul-Clark MJ, Rosignoli G, et al. Calcitonin and prednisolone display antagonistic actions on bone and have synergistic effects in experimental arthritis. Am J Pathol 2007; 170(3): 1018–27

    Article  PubMed  CAS  Google Scholar 

  97. Lyritis G, Boscainos PJ. Calcitonin effects on cartilage and fracture healing. J Musculoskelet Neuronal Interact 2001; 2(2): 137–42

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr Karsdal has received honoraria from Novartis and holds stock in Nordic Bioscience. Dr Henriksen is an employee of Nordic Bioscience. Dr Christiansen is CEO of Nordic Bioscience and has acted as a consultant to numerous pharmaceutical companies involved in the development of osteoporosis therapies, including Roche, Wyeth-Ayerst, Eli Lilly, Novartis, Novo Nordisk, Proctor and Gamble, Groupe Fournier, Besins Iscovesco, Merck Sharp and Dohme, Chiesi, Boehringer Mannheim and Pfizer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten A. Karsdal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karsdal, M.A., Henriksen, K., Arnold, M. et al. Calcitonin — A Drug of the Past or for the Future?. BioDrugs 22, 137–144 (2008). https://doi.org/10.2165/00063030-200822030-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-200822030-00001

Keywords

Navigation