Skip to main content
Log in

The Autism Genome Project

Goals and Strategies

  • Databases and Genome Projects
  • Published:
American Journal of Pharmacogenomics

Abstract

Autism is a complex neurodevelopmental disorder with a broad spectrum of symptoms and varying severity. Currently, no biological diagnosis exists. Although there has been a significant increase in autism genetics research recently, validated susceptibility genes for the most common, sporadic forms of autistic disorder, as well as familial autism, have yet to be identified. The identification of autism-susceptibility genes will not only assist in the identification and/or development of better medications that can help improve the health and neurodevelopment of children with autism, but will also allow for better perinatal diagnosis. The Autism Genome Project (AGP) is a large-scale, collaborative genetics research project initiated by the National Alliance for Autism Research and the National Institutes of Health, and is aimed at sifting through the human genome in search of autism-susceptibility genes. Phase I of the AGP will consist of genome-wide scans utilizing both SNP array and microsatellite technologies. Linkage analysis will subsequently be performed on approximately 1500 pedigrees as will downstream fine-mapping and sequencing of the critical linkage intervals. Ultimately, the vision will be to identify the exact nucleotide variants within genes which give rise to predisposition. The AGP intends to move the field of autism clinical management forward by answering questions about the causal mechanisms underlying the pathophysiology of autism. From this knowledge, therapeutic targets for drug treatments, and ultimately, a newborn screening diagnostic that would allow for early intervention, can begin to be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Table II

Similar content being viewed by others

References

  1. Stokstad E. Development: new hints into the biological basis of autism. Science 2001; 294: 34–7

    Article  PubMed  CAS  Google Scholar 

  2. Filipek PA, Accardo PJ, Baranek GT, et al. The screening and diagnosis of autistic spectrum disorders. J Autism Dev Disord 1999; 29: 439–84

    Article  PubMed  CAS  Google Scholar 

  3. Fombonne E. The epidemiology of autism: a review. Psychol Med 1999; 29: 769–86

    Article  PubMed  CAS  Google Scholar 

  4. Santangelo SL, Tsatsanis K. What is known about autism: genes, brain, and behavior. Am J Pharmacogenomics 2005; 5(2): 71–92

    Article  PubMed  CAS  Google Scholar 

  5. Muhle R, Trentacoste SV, Rapin I. The genetics of autism. Pediatrics 2004; 113: e472–86

    Article  PubMed  Google Scholar 

  6. Lotspeich LJ, Ciaranello RD. The neurobiology and genetics of infantile autism. Int Rev Neurobiol 1993; 35: 87–129

    Article  PubMed  CAS  Google Scholar 

  7. Spence MA. The genetics of autism. Curr Opin Pediatr 2001; 13: 561–5

    Article  PubMed  CAS  Google Scholar 

  8. Risch N, Spiker D, Lotspeich L, et al. A genomic screen of autism: evidence for a multilocus etiology. Am J Hum Genet 1999; 65: 493–507

    Article  PubMed  CAS  Google Scholar 

  9. Bailey A, Phillips W, Rutter M. Autism: towards an integration of clinical, genetic, neuropsychological, and neurobiological perspectives. J Child Psychol Psychiatry 1996; 37: 89–126

    Article  PubMed  CAS  Google Scholar 

  10. Lord C, Rutter M, Le Couteur A. Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 1994; 24: 659–85

    Article  PubMed  CAS  Google Scholar 

  11. Rutter M. Incidence of autism spectrum disorders: changes over time and their meaning. Acta Paediatr 2005; 94: 2–15

    Article  PubMed  CAS  Google Scholar 

  12. Chakrabarti S, Fombonne E. Pervasive developmental disorders in preschool children. JAMA 2001; 285: 3093–9

    Article  PubMed  CAS  Google Scholar 

  13. Folstein S, Rutter M. Infantile autism: a genetic study of 21 twin pairs. J Child Psychol Psychiatry 1977; 18: 297–321

    Article  PubMed  CAS  Google Scholar 

  14. Ritvo ER, Freeman BJ, Mason-Brothers A, et al. Concordance for the syndrome of autism in 40 pairs of afflicted twins. Am J Psychiatry 1985; 142: 74–7

    PubMed  CAS  Google Scholar 

  15. Steffenburg S, Gillberg C, Hellgren L, et al. A twin study of autism in Denmark, Finland, Iceland, Norway and Sweden. J Child Psychol Psychiatry 1989; 30: 405–16

    Article  PubMed  CAS  Google Scholar 

  16. Bailey A, Le Couteur A, Gottesman I, et al. Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 1995; 25: 63–77

    Article  PubMed  CAS  Google Scholar 

  17. Brown WT, Jenkins EC, Cohen IL, et al. Fragile X and autism: a multicenter survey. Am J Med Genet 1986; 23: 341–52

    Article  PubMed  CAS  Google Scholar 

  18. Folstein SE, Piven J. Etiology of autism: genetic influences. Pediatrics 1991; 87: 767–73

    PubMed  CAS  Google Scholar 

  19. Smalley SL. Autism and tuberous sclerosis. J Autism Dev Disord 1998; 28: 407–14

    Article  PubMed  CAS  Google Scholar 

  20. Steffenburg S, Gillberg CL, Steffenburg U, et al. Autism in Angelman syndrome: a population-based study. Pediatr Neurol 1996; 14: 131–6

    Article  PubMed  CAS  Google Scholar 

  21. Folstein SE, Rutter ML. Autism: familial aggregation and genetic implications. J Autism Dev Disord 1988; 18: 3–30

    Article  PubMed  CAS  Google Scholar 

  22. Gillberg C. Chromosomal disorders and autism. J Autism Dev Disord 1998; 28: 415–25

    Article  PubMed  CAS  Google Scholar 

  23. Lamb JA, Moore J, Bailey A, et al. Autism: recent molecular genetic advances. Hum Mol Genet 2000; 9: 861–8

    Article  PubMed  CAS  Google Scholar 

  24. Rutter M. Genetic studies of autism: from the 1970s into the millennium. J Abnorm Child Psychol 2000; 28: 3–14

    Article  PubMed  CAS  Google Scholar 

  25. Pickles A, Bolton P, Macdonald H, et al. Latent-class analysis of recurrence risks for complex phenotypes with selection and measurement error: a twin and family history study of autism. Am J Hum Genet 1995; 57: 717–26

    PubMed  CAS  Google Scholar 

  26. Ferrari M, Antonelli M, Bellini F, et al. Genetic differences in cystic fibrosis patients with and without pancreatic insufficiency: an Italian collaborative study. Hum Genet 1990; 84(5): 435–8

    Article  PubMed  CAS  Google Scholar 

  27. Weeks DE, Lathrop GM. Polygenic disease: methods for mapping complex disease traits. Trends Genet 1995; 11: 513–9

    Article  PubMed  CAS  Google Scholar 

  28. Risch NJ. Searching for genetic determinants in the new millennium. Nature 2000; 405: 847–56

    Article  PubMed  CAS  Google Scholar 

  29. Glazier AM, Nadeau JH, Aitman TJ. Finding genes that underlie complex traits. Science 2002; 298: 2345–9

    Article  PubMed  CAS  Google Scholar 

  30. Lander ES, Schork NJ. Genetic dissection of complex traits. Science 1994; 265: 2037–48

    Article  PubMed  CAS  Google Scholar 

  31. Todd JA, Bell JI, McDevitt HO. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 1987; 329: 599–604

    Article  PubMed  CAS  Google Scholar 

  32. Todd JA, Acha-Orbea H, Bell JI, et al. A molecular basis for MHC class II: associated autoimmunity. Science 1988; 240: 1003–9

    Article  PubMed  CAS  Google Scholar 

  33. Todd JA, Wicker LS. Genetic protection from the inflammatory disease type 1 diabetes in humans and animal models. Immunity 2001; 15: 387–95

    Article  PubMed  CAS  Google Scholar 

  34. Pericak-Vance MA, Bebout JL, Gaskell PC, et al. Linkage studies in familial Alzheimer disease: evidence for chromosome 19 linkage. Am J Hum Genet 1991; 48: 1034–50

    PubMed  CAS  Google Scholar 

  35. Corder EH, Saunders AM, Strittmatter WJ, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993; 261: 921–3

    Article  PubMed  CAS  Google Scholar 

  36. Bales KR, Verina T, Cummins DJ, et al. Apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 1999; 96: 15233–8

    Article  PubMed  CAS  Google Scholar 

  37. Ramoz N, Reichert JG, Smith CJ, et al. Linkage and association of the mitochondrial aspartate/glutamate carrier SLC25A12 gene with autism. Am J Psychiatry 2004; 161: 662–9

    Article  PubMed  Google Scholar 

  38. Warren RP, Odell JD, Warren WL, et al. Strong association of the third hypervariable region of HLA-DR beta 1 with autism. J Neuroimmunol 1996; 67: 97–102

    Article  PubMed  CAS  Google Scholar 

  39. Jamain S, Betancur C, Quach H, et al. Linkage and association of the glutamate receptor 6 gene with autism. Mol Psychiatry 2002; 7: 302–10

    Article  PubMed  CAS  Google Scholar 

  40. Bonora E, Lamb JA, Barnby G, et al. Mutation screening and association analysis of six candidate genes for autism on chromosome 7q. Eur J Hum Genet 2005; 13: 198–207

    Article  PubMed  CAS  Google Scholar 

  41. Hutcheson HB, Olson LM, Bradford Y, et al. Examination of NRCAM, LRRN3, KIAA0716, and LAMB1 as autism candidate genes. BMC Med Genet 2004; 5: 12

    Article  PubMed  Google Scholar 

  42. Zhang H, Liu X, Zhang C, et al. Reelin gene alleles and susceptibility to autism spectrum disorders. Mol Psychiatry 2002; 7: 1012–7

    Article  PubMed  CAS  Google Scholar 

  43. Persico AM, D’Agruma L, Maiorano N, et al. Reelin gene alleles and haplotypes as a factor predisposing to autistic disorder. Mol Psychiatry 2001; 6: 150–9

    Article  PubMed  CAS  Google Scholar 

  44. Serajee FJ, Zhong H, Nabi R, et al. The metabotropic glutamate receptor 8 gene at 7q31: partial duplication and possible association with autism. J Med Genet 2003; 40: e42

    Article  PubMed  CAS  Google Scholar 

  45. Wassink TH, Piven J, Vieland VJ, et al. Evidence supporting WNT2 as an autism susceptibility gene. Am J Med Genet 2001; 105: 406–13

    Article  PubMed  CAS  Google Scholar 

  46. International Molecular Genetic Study of Autism Consortium (IMGSAC). Further characterization of the autism susceptibility locus AUTS1 on chromosome 7q. Hum Mol Genet 2001 Apr 15; 10(4): 973–82

    Article  Google Scholar 

  47. Gharani N, Benayed R, Mancuso V, et al. Association of the homeobox transcription factor, ENGRAILED 2, 3, with autism spectrum disorder. Mol Psychiatry 2004; 9: 474–84

    Article  PubMed  CAS  Google Scholar 

  48. Herault J, Petit E, Martineau J, et al. Autism and genetics: clinical approach and association study with two markers of HRAS gene. Am J Med Genet 1995; 60: 276–81

    Article  PubMed  CAS  Google Scholar 

  49. Cook EH, Courchesne RY, Cox NJ, et al. Linkage-disequilibrium mapping of autistic disorder, with 15q11-13 markers. Am J Hum Genet 1998; 62: 1077–83

    Article  PubMed  CAS  Google Scholar 

  50. Buxbaum JD, Silverman JM, Smith CJ, et al. Association between a GABRB3 polymorphism and autism. Mol Psychiatry 2002; 7: 311–6

    Article  PubMed  CAS  Google Scholar 

  51. McCauley JL, Olson LM, Delahanty R, et al. A linkage disequilibrium map of the 1-Mb 15ql2 GABA(A) receptor subunit cluster and association to autism. Am J Med Genet 2004; 131B: 51–9

    Article  PubMed  Google Scholar 

  52. Menold MM, Shao Y, Wolpert CM, et al. Association analysis of chromosome 15 gabaa receptor subunit genes in autistic disorder. J Neurogenet 2001; 15: 245–59

    Article  PubMed  CAS  Google Scholar 

  53. Nurmi EL, Bradford Y, Chen Y, et al. Linkage disequilibrium at the Angelman syndrome gene UBE3A in autism families. Genomics 2001; 77: 105–13

    Article  PubMed  CAS  Google Scholar 

  54. Vourc’h P, Martin I, Marouillat S, et al. Molecular analysis of the oligodendrocyte myelin glycoprotein gene in autistic disorder. Neurosci Lett 2003; 338: 115–8

    Article  PubMed  CAS  Google Scholar 

  55. Kim SJ, Herzing LB, Veenstra-Vander Weele J, et al. Mutation screening and transmission disequilibrium study of ATP10C in autism. Am J Med Genet 2002; 114: 137–43

    Article  PubMed  Google Scholar 

  56. Cook Jr EH, Courchesne R, Lord C, et al. Evidence of linkage between the serotonin transporter and autistic disorder. Mol Psychiatry 1997; 2: 247–50

    Article  PubMed  Google Scholar 

  57. Klauck SM, Poustka F, Benner A, et al. Serotonin transporter (5-HTT; gene variants associated with autism? Hum Mol Genet 1997; 6: 2233–8

    Article  PubMed  CAS  Google Scholar 

  58. Yirmiya N, Pilowsky T, Nemanov L, et al. Evidence for an association with the serotonin transporter promoter region polymorphism and autism. Am J Med Genet 2001; 105: 381–6

    Article  PubMed  CAS  Google Scholar 

  59. Tordjman S, Gutknecht L, Carlier M, et al. Role of the serotonin transporter gene in the behavioral expression of autism. Mol Psychiatry 2001; 6: 434–9

    Article  PubMed  CAS  Google Scholar 

  60. Bottini N, De Luca D, Saccucci P, et al. Autism: evidence of association with adenosine deaminase genetic polymorphism. Neurogenetics 2001; 3: 111–3

    Article  PubMed  CAS  Google Scholar 

  61. Petit E, Herault J, Raynaud M, et al. X chromosome and infantile autism. Biol Psychiatry 1996; 40: 457–64

    Article  PubMed  CAS  Google Scholar 

  62. Folstein SE, Rosen-Sheidley B. Genetics of autism: complex aetiology for a heterogeneous disorder. Nat Rev Genet 2001; 2: 943–55

    Article  PubMed  CAS  Google Scholar 

  63. Schroer RJ, Phelan MC, Michaelis RC, et al. Autism and maternally derived aberrations of chromosome 15q. Am J Med Genet 1998; 76: 327–36

    Article  PubMed  CAS  Google Scholar 

  64. Herzing LB, Kim SJ, Cook EH, et al. The human aminophospholipid-transporting ATPase gene ATP10C maps adjacent to UBE3A and exhibits similar imprinted expression. Am J Hum Genet 2001; 68: 1501–5

    Article  PubMed  CAS  Google Scholar 

  65. Gurrieri F, Battaglia A, Torrisi L, et al. Pervasive developmental disorder and epilepsy due to maternally derived duplication of 15q11-q13. Neurology 1999; 52: 1694–7

    Article  PubMed  CAS  Google Scholar 

  66. Herzing LB, Cook EH, Ledbetter DH. Allele-specific expression analysis by RNA-FISH demonstrates preferential maternal expression of UBE3A and imprint maintenance within 15q11-q13 duplications. Hum Mol Genet 2002; 11: 1707–18

    Article  PubMed  CAS  Google Scholar 

  67. Bolton PF, Dennis NR, Browne CE, et al. The phenotypic manifestations of interstitial duplications of proximal 15q with special reference to the autistic spectrum disorders. Am J Med Genet 2001; 105: 675–85

    Article  PubMed  CAS  Google Scholar 

  68. Wolpert CM, Donnelly SL, Cuccaro ML, et al. De novo partial duplication of chromosome 7p in a male with autistic disorder. Am J Med Genet 2001; 105: 222–5

    Article  PubMed  CAS  Google Scholar 

  69. Borgatti R, Piccinelli P, Passoni D, et al. Relationship between clinical and genetic features in “inverted duplicated chromosome 15” patients. Pediatr Neurol 2001; 24: 111–6

    Article  PubMed  CAS  Google Scholar 

  70. Owens DF, Kriegstein AR. Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 2002; 3: 715–27

    Article  PubMed  CAS  Google Scholar 

  71. Maestrini E, Lai C, Marlow A, et al. Serotonin transporter (5-HTT; and gamma-aminobutyric acid receptor subunit beta3 (GABRB3; gene polymorphisms are not associated with autism in the IMGSA families. The International Molecular Genetic Study of Autism Consortium. Am J Med Genet 1999; 88: 492–6

    Article  PubMed  CAS  Google Scholar 

  72. Martin ER, Menold MM, Wolpert CM, et al. Analysis of linkage disequilibrium in gamma-aminobutyric acid receptor subunit genes in autistic disorder. Am J Med Genet 2000; 96: 43–8

    Article  PubMed  Google Scholar 

  73. Salmon B, Hallmayer J, Rogers T, et al. Absence of linkage and linkage disequilibrium to chromosome 15q11–q13 markers in 139 multiplex families with autism. Am J Med Genet 1999; 88: 551–6

    Article  PubMed  CAS  Google Scholar 

  74. Rougeulle C, Cardoso C, Fontes M, et al. An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript. Nat Genet 1998; 19:15–6

    Article  PubMed  CAS  Google Scholar 

  75. Ashley-Koch A, Wolpert CM, Menold MM, et al. Genetic studies of autistic disorder and chromosome 7. Genomics 1999; 61: 227–36

    Article  PubMed  CAS  Google Scholar 

  76. Yan WL, Guan XY, Green ED, et al. Childhood-onset schizophrenia/autistic disorder and t(1;7) reciprocal translocation: identification of a BAC contig spanning the translocation breakpoint at 7q21. Am J Med Genet 2000; 96: 749–53

    Article  PubMed  CAS  Google Scholar 

  77. Scherer SW, Cheung J, MacDonald JR, et al. Human chromosome 7: DNA sequence and biology. Science 2003; 300: 767–72

    Article  PubMed  CAS  Google Scholar 

  78. Hong SE, Shugart YY, Huang DT, et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 2000; 26: 93–6

    Article  PubMed  CAS  Google Scholar 

  79. Krebs MO, Betancur C, Leroy S, et al. Absence of association between a polymorphic GGC repeat in the 5′ untranslated region of the reelin gene and autism. Mol Psychiatry 2002; 7: 801–4

    Article  PubMed  CAS  Google Scholar 

  80. Bonora E, Beyer KS, Lamb JA, et al. Analysis of reelin as a candidate gene for autism. Mol Psychiatry 2003; 8: 885–92

    Article  PubMed  CAS  Google Scholar 

  81. Devlin B, Bennett P, Dawson G, et al. Alleles of a reelin CGG repeat do not convey liability to autism in a sample from the CPEA network. Am J Med Genet 2004; 126B: 46–50

    Article  PubMed  Google Scholar 

  82. Newbury DF, Bonora E, Lamb JA, et al. FOXP2 is not a major susceptibility gene for autism or specific language impairment. Am J Hum Genet 2002; 70: 1318–27

    Article  PubMed  CAS  Google Scholar 

  83. Petek E, Windpassinger C, Vincent JB, et al. Disruption of a novel gene (IMMP2L) by a breakpoint in 7q31 associated with Tourette syndrome. Am J Hum Genet 2001; 68: 848–58

    Article  PubMed  CAS  Google Scholar 

  84. Vincent JB, Herbrick JA, Gurling HM, et al. Identification of a novel gene on chromosome 7q31 that is interrupted by a translocation breakpoint in an autistic individual. Am J Hum Genet 2000; 67: 510–4

    Article  PubMed  CAS  Google Scholar 

  85. McDougle CJ, Posey D. Genetics of childhood disorders: XLIV. Autism: Part 3. Psychopharmacology of autism. J Am Acad Child Adolesc Psychiatry 2002; 41: 1380–3

    Article  PubMed  Google Scholar 

  86. Chugani DC. Role of altered brain serotonin mechanisms in autism. Mol Psychiatry 2002; 7Suppl. 2: S16–7

    Article  PubMed  Google Scholar 

  87. Ernst M, Zametkin AJ, Matochik JA, et al. Low medial prefrontal dopaminergic activity in autistic children [letter]. Lancet 1997; 350: 638

    Article  PubMed  CAS  Google Scholar 

  88. Gillberg C, Svennerholm L. CSF monoamines in autistic syndromes and other pervasive developmental disorders of early childhood. Br J Psychiatry 1987; 151: 89–94

    Article  PubMed  CAS  Google Scholar 

  89. Martineau J, Herault J, Petit E, et al. Catecholaminergic metabolism and autism. Dev Med Child Neurol 1994; 36: 688–97

    Article  PubMed  CAS  Google Scholar 

  90. Philippe A, Guilloud-Bataille M, Martinez M, et al. Analysis of ten candidate genes in autism by association and linkage. Am J Med Genet 2002; 114: 125–8

    Article  PubMed  Google Scholar 

  91. Ingram JL, Stodgell CJ, Hyman SL, et al. Discovery of allelic variants of HOXA1 and HOXB1: genetic susceptibility to autism spectrum disorders. Teratology 2000; 62: 393–405

    Article  PubMed  CAS  Google Scholar 

  92. Goodman FR, Scambler PJ. Human HOX gene mutations. Clin Genet 2001; 59: 1–11

    Article  PubMed  CAS  Google Scholar 

  93. Nilsson M, Waters S, Waters N, et al. A behavioural pattern analysis of hypoglutamatergic mice: effects of four different antipsychotic agents. J Neural Transm 2001; 108:1181–96

    Article  PubMed  CAS  Google Scholar 

  94. Carlsson ML. Hypothesis: is infantile autism a hypoglutamatergic disorder? Relevance of glutamate-serotonin interactions for pharmacotherapy. J Neural Transm 1998; 105: 525–35

    Article  PubMed  CAS  Google Scholar 

  95. Wassink TH, Piven J, Vieland VJ, et al. Examination of AVPR1a as an autism susceptibility gene. Mol Psychiatry 2004; 9: 968–72

    Article  PubMed  CAS  Google Scholar 

  96. Badner JA, Gershon ES, Goldin LR. Optimal ascertainment strategies to detect linkage to common disease alleles. Am J Hum Genet 1998; 63: 880–8

    Article  PubMed  CAS  Google Scholar 

  97. International Molecular Genetic Study of Autism Consortium. A full genome screen for autism with evidence for linkage to a region on chromosome 7q. Hum Mol Genet 1998; 7: 571–8

    Article  CAS  Google Scholar 

  98. Collaborative Linkage Study of Autism. An autosomal genomic screen for autism. Am J Med Genet 2001; 105: 609–15

    Google Scholar 

  99. Philippe A, Martinez M, Guilloud-Bataille M, et al. Genome-wide scan for autism susceptibility genes. Paris Autism Research International Sibpair Study. Hum Mol Genet 1999; 8: 805–12

    Article  PubMed  CAS  Google Scholar 

  100. Liu J, Nyholt DR, Magnussen P, et al. A genomewide screen for autism susceptibility loci. Am J Hum Genet 2001; 69: 327–40

    Article  PubMed  CAS  Google Scholar 

  101. International Molecular Genetic Study of Autism Consortium (IMGSAC). A genomewide screen for autism: strong evidence for linkage to chromosomes 2q, 7q, and 16p. Am J Hum Genet 2001; 69: 570–81

    Article  Google Scholar 

  102. Buxbaum JD, Silverman JM, Smith CJ, et al. Evidence for a susceptibility gene for autism on chromosome 2 and for genetic heterogeneity. Am J Hum Genet 2001; 68: 1514–20

    Article  PubMed  CAS  Google Scholar 

  103. Shao Y, Wolpert CM, Raiford KL, et al. Genomic screen and follow-up analysis for autistic disorder. Am J Med Genet 2002; 114: 99–105

    Article  PubMed  Google Scholar 

  104. Alarcon M, Cantor RM, Liu J, et al. Evidence for a language quantitative trait locus on chromosome 7q in multiplex autism families. Am J Hum Genet 2002; 70: 60–71

    Article  PubMed  CAS  Google Scholar 

  105. Auranen M, Vanhala R, Varilo T, et al. A genomewide screen for autism-spectrum disorders: evidence for a major susceptibility locus on chromosome 3q25-27. Am J Hum Genet 2002; 71: 777–90

    Article  PubMed  Google Scholar 

  106. Yonan AL, Alarcon M, Cheng R, et al. A genomewide screen of 345 families for autism-susceptibility loci. Am J Hum Genet 2003; 73: 886–97

    Article  PubMed  CAS  Google Scholar 

  107. Buxbaum JD, Silverman J, Keddache M, et al. Linkage analysis for autism in a subset families with obsessive-compulsive behaviors: evidence for an autism susceptibility gene on chromosome 1 and further support for susceptibility genes on chromosome 6 and 19. Mol Psychiatry 2004; 9: 144–50

    Article  PubMed  CAS  Google Scholar 

  108. Auranen M, Nieminen T, Majuri S, et al. Analysis of autism susceptibility gene loci on chromosomes 1p, 4p, 6q, 7q, 13q, 15q, 16p, 17q, 19q and 22q in Finnish multiplex families. Mol Psychiatry 2000; 5: 320–2

    Article  PubMed  CAS  Google Scholar 

  109. Newschaffer CJ, Fallin D, Lee NL. Heritable and nonheritable risk factors for autism spectrum disorders. Epidemiol Rev 2002; 24: 137–53

    Article  PubMed  Google Scholar 

  110. Ellegren H. Microsatellites: simple sequences with complex evolution. Nat Rev Genet 2004; 5: 435–45

    Article  PubMed  CAS  Google Scholar 

  111. Ardlie KG, Kruglyak L, Seielstad M. Patterns of linkage disequilibrium in the human genome. Nat Rev Genet 2002; 3: 299–309

    Article  PubMed  CAS  Google Scholar 

  112. Carlson CS, Eberle MA, Rieder MJ, et al. Additional SNPs and linkage-disequilibrium analyses are necessary for whole-genome association studies in humans. Nat Genet 2003; 33: 518–21

    Article  PubMed  CAS  Google Scholar 

  113. Kruglyak L, Nickerson DA. Variation is the spice of life. Nat Genet 2001; 27: 234–6

    Article  PubMed  CAS  Google Scholar 

  114. Evans DM, Cardon LR. Guidelines for genotyping in genomewide linkage studies: single-nucleotide-polymorphism maps versus microsatellite maps. Am J Hum Genet 2004; 75: 687–92

    Article  PubMed  CAS  Google Scholar 

  115. John S, Shephard N, Liu G, et al. Whole-genome scan, in a complex disease, using 11, 245 single-nucleotide polymorphisms: comparison with microsatellites. Am J Hum Genet 2004; 75: 54–64

    Article  PubMed  CAS  Google Scholar 

  116. Sachidanandam R, Weissman D, Schmidt SC, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001; 409: 928–33

    Article  PubMed  CAS  Google Scholar 

  117. Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999; 286: 487–91

    Article  PubMed  CAS  Google Scholar 

  118. Davignon J, Gregg RE, Sing CF. Apolipoprotein E polymorphism and atherosclerosis. Arteriosclerosis 1988; 8: 1–21

    Article  PubMed  CAS  Google Scholar 

  119. Bertina RM, Koeleman BP, Koster T, et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 1994; 369: 64–7

    Article  PubMed  CAS  Google Scholar 

  120. Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225–9

    Article  PubMed  CAS  Google Scholar 

  121. Rosenberg NA, Pritchard JK, Weber JL, et al. Genetic structure of human populations. Science 2002; 298: 2381–5

    Article  PubMed  CAS  Google Scholar 

  122. Matise TC, Sachidanandam R, Clark AG, et al. A 3.9-centimorgan-resolution human single-nucleotide polymorphism linkage map and screening set. Am J Hum Genet 2003; 73: 271–84

    Article  PubMed  CAS  Google Scholar 

  123. Puffenberger EG, Hu-Lince D, Parod JM, et al. Mapping of sudden infant death with dysgenesis of the testes syndrome (SIDDT) by a SNP genome scan and identification of TSPYL loss of function. Proc Natl Acad Sci U S A 2004; 101: 11689–94

    Article  PubMed  CAS  Google Scholar 

  124. Shrimpton AE, Levinsohn EM, Yozawitz JM, et al. A HOX gene mutation in a family with isolated congenital vertical talus and Charcot-Marie-Tooth disease. Am J Hum Genet 2004; 75: 92–6

    Article  PubMed  CAS  Google Scholar 

  125. Sellick GS, Longman C, Tolmie J, et al. Genomewide linkage searches for Mendelian disease loci can be efficiently conducted using high-density SNP genotyping arrays. Nucleic Acids Res 2004; 32: el64

    Article  CAS  Google Scholar 

  126. Schaid DJ, Guenther JC, Christensen GB, et al. Comparison of microsatellites versus single-nucleotide polymorphisms in a genome linkage screen for prostate cancer-susceptibility loci. Am J Hum Genet 2004; 75: 948–65

    Article  PubMed  CAS  Google Scholar 

  127. Abecasis GR, Cherny SS, Cookson WO, et al. Merlin: rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002; 30: 97–101

    Article  PubMed  CAS  Google Scholar 

  128. Middleton FA, Pato MT, Gentile KL, et al. Genomewide linkage analysis of bipolar disorder by use of a high-density single-nucleotide-polymorphism (SNP) genotyping assay: a comparison with microsatellite marker assays and finding of significant linkage to chromosome 6q22. Am J Hum Genet 2004; 74: 886–97

    Article  PubMed  CAS  Google Scholar 

  129. Murray SS, Oliphant A, Shen R, et al. A highly informative SNP linkage panel for human genetic studies. Nat Methods 2004; 1: 113–7

    Article  PubMed  CAS  Google Scholar 

  130. Sawcer SJ, Maranian M, Singlehurst S, et al. Enhancing linkage analysis of complex disorders: an evaluation of high-density genotyping. Hum Mol Genet 2004; 13: 1943–9

    Article  PubMed  Google Scholar 

  131. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996; 273: 1516–7

    Article  PubMed  CAS  Google Scholar 

  132. Carlson CS, Eberle MA, Kruglyak L, et al. Mapping complex disease loci in whole-genome association studies. Nature 2004; 429: 446–52

    Article  PubMed  CAS  Google Scholar 

  133. Sponheim E. Changing criteria of autistic disorders: a comparison of the ICD-10 research criteria and DSM-IV with DSM-III-R, CARS, and ABC. J Autism Dev Disord 1996; 26: 513–25

    Article  PubMed  CAS  Google Scholar 

  134. Kennedy GC, Matsuzaki H, Dong S, et al. Large-scale genotyping of complex DNA. Nat Biotechnol 2003; 21: 1233–7

    Article  PubMed  CAS  Google Scholar 

  135. Chee M, Yang R, Hubbell E, et al. Accessing genetic information with high-density DNA arrays. Science 1996; 274: 610–4

    Article  PubMed  CAS  Google Scholar 

  136. Gentalen E, Chee M. A novel method for determining linkage between DNA sequences: hybridization to paired probe arrays. Nucleic Acids Res 1999; 27: 1485–91

    Article  PubMed  CAS  Google Scholar 

  137. Fan JB, Chen X, Halushka MK, et al. Parallel genotyping of human SNPs using generic high-density oligonucleotide tag arrays. Genome Res 2000; 10: 853–60

    Article  PubMed  CAS  Google Scholar 

  138. Matsuzaki H, Loi H, Dong S, et al. Parallel genotyping of over 10,000 SNPs using a one-primer assay on a high-density oligonucleotide array. Genome Res 2004; 14: 414–25

    Article  PubMed  CAS  Google Scholar 

  139. Liu WM, Di X, Yang G, et al. Algorithms for large-scale genotyping microarrays. Bioinformatics 2003; 19: 2397–403

    Article  PubMed  CAS  Google Scholar 

  140. Cutler DJ, Zwick ME, Carrasquillo MM, et al. High-throughput variation detection and genotyping using microarrays. Genome Res 2001; 11: 1913–25

    PubMed  CAS  Google Scholar 

  141. O’Connell JR, Weeks DE. PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 1998; 63: 259–66

    Article  PubMed  Google Scholar 

  142. International HapMap Consortium. Integrating ethics and science in the International HapMap Project. Nat Rev Genet 2004; 5: 467–75

    Article  CAS  Google Scholar 

  143. Lander ES, Green P. Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci U S A 1987; 84: 2363–7

    Article  PubMed  CAS  Google Scholar 

  144. Lathrop GM, Lalouel JM, Julier C, et al. Strategies for multilocus linkage analysis in humans. Proc Natl Acad Sci U S A 1984; 81: 3443–6

    Article  PubMed  CAS  Google Scholar 

  145. Sobel E, Lange K. Descent graphs in pedigree analysis: applications to halotyping, location scores, and marker-sharing statistics. Am J Hum Genet 1996; 58: 1323–37

    PubMed  CAS  Google Scholar 

  146. Lieberfarb ME, Lin M, Lechpammer M, et al. Genome-wide loss of heterozygosity analysis from laser capture microdissected prostate cancer using single nucleotide polymorphic allele (SNP) arrays and a novel bioinformatics platform dChipSNP. Cancer Res 2003; 63: 4781–5

    PubMed  CAS  Google Scholar 

  147. Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet 2003; 33 Suppl.: 228–37

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr Hu-Lince received a National Research Service Award Fellowship (P32 NS43932).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu-Lince, D., Craig, D.W., Huentelman, M.J. et al. The Autism Genome Project. Am J Pharmacogenomics 5, 233–246 (2005). https://doi.org/10.2165/00129785-200505040-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200505040-00004

Keywords

Navigation