Skip to main content
Log in

Lactic Acidosis Induced by Metformin

Incidence, Management and Prevention

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Lactic acidosis associated with metformin treatment is a rare but important adverse event, and unravelling the problem is critical. First, this potential event still influences treatment strategies in type 2 diabetes mellitus, particularly in the many patients at risk of kidney failure, in those presenting contraindications to metformin and in the elderly. Second, the relationship between metformin and lactic acidosis is complex, since use of the drug may be causal, co-responsible or coincidental. The present review is divided into three parts, dealing with the incidence, management and prevention of lactic acidosis occurring during metformin treatment. In terms of incidence, the objective of this article is to counter the conventional view of the link between metformin and lactic acidosis, according to which metformin-associated lactic acidosis is rare but is still associated with a high rate of mortality. In fact, the direct metformin-related mortality is close to zero and metformin may even be protective in cases of very severe lactic acidosis unrelated to the drug. Metformin has also inherited a negative class effect, since the early biguanide, phenformin, was associated with more frequent and sometimes fatal lactic acidosis. In the second part of this review, the objective is to identify the most efficient patient management methods based on our knowledge of how metformin acts on glucose/lactate metabolism and how lactic acidosis may occur (at the organ and cellular levels) during metformin treatment. The liver appears to be a key organ for both the antidiabetic effect of metformin and the development of lactic acidosis; the latter is attributed to mitochondrial impairment and subsequent adenosine triphosphate depletion, acceleration of the glycolytic flux, increased glucose uptake and the generation of lactate, which effluxes into the circulation rather than being oxidized further. Haemodialysis should systematically be performed in severe forms of lactic acidosis, since it provides both symptomatic and aetiological treatment (by eliminating lactate and metformin). In the third part of the review (prevention), the objective is to examine the list of contraindications to metformin (primarily related to renal and cardiovascular function). Diabetes is above all a vascular disease and metformin is a vascular drug with antidiabetic properties. Given the importance of the liver in lactate clearance, we suggest focusing on the severity of and prognosis for liver disease; renal dysfunction is only a prerequisite for metformin accumulation, which may only be dangerous per se when associated with liver failure. Lastly, in view of metformin’s impressive overall effectiveness profile, it would be paradoxical to deny the majority of patients with long-established diabetes access to metformin because of the high prevalence of contraindications. The implications of these contraindications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I

Similar content being viewed by others

References

  1. Chan N, Brain H, Feher M. Metformin-associated lactic acidosis: a rare or very rare clinical entity? Diabetic Med 1999 Apr; 16(4): 273–81

    Article  PubMed  CAS  Google Scholar 

  2. Misbin RI. The phantom of lactic acidosis due to metformin in patients with diabetes. Diabetes Care 2004 Jul; 27(7): 1791–3

    Article  PubMed  Google Scholar 

  3. Cohen R, Woods H. The clinical presentations and classifications of lactic acidosis. In: Cohen R, HF Woods, editors. Clinical and biochemical aspects of lactic acidosis. Boston (MA): Blackwell Scientific Publications, 1976: 40–52

    Google Scholar 

  4. Luft D, Deichsel G, Schmulling R, et al. Definition of clinically relevant lactic acidosis in patients with internal diseases. Am J Clin Pathol 1983 Oct; 80(4): 484–9

    PubMed  CAS  Google Scholar 

  5. Arieff A. Pathogenesis of lactic acidosis. Diabetes Metab Rev 1989 Dec; 5(8): 637–49

    Article  PubMed  CAS  Google Scholar 

  6. Stacpoole P. Lactic acidosis. Endocrinol Metab Clin North Am 1993; 22: 221–45

    PubMed  CAS  Google Scholar 

  7. Sterne J. Pharmacology and mode of action of hypoglycaemic guanidine derivatives. In: Campbell IW, editor. Oral hypoglycaemic agents. London: Academic Press, 1969: 193–245

    Google Scholar 

  8. Kreisberg R, Pennington L, Boshell B. Lactate turnover and gluconeogenesis in obesity: effect of phenformin. Diabetes 1970 Jan; 19(1): 64–9

    PubMed  CAS  Google Scholar 

  9. Searle G, Siperstein M. Lactic acidosis associated with phenformin therapy: evidence that inhibited lactate oxidation is the causative factor. Diabetes 1975 Aug; 24(8): 741–5

    Article  PubMed  CAS  Google Scholar 

  10. Natrass M, Todd P, Hinks L, et al. Comparative effects of phenformin, metformin and glibenclamide in metabolic rhythms in maturity-onset diabetes. Diabetologia 1977 Apr; 13(2): 145–52

    Article  Google Scholar 

  11. Oates N, Shah R, Idle J, et al. Genetic polymorphism of phenformin 4-hydroxylation. Clin Pharmacol Ther 1982 Jul; 32(1): 81–9

    Article  PubMed  CAS  Google Scholar 

  12. Williams R, Palmer J. Farewell to phenformin for treating diabetes mellitus. Ann Intern Med 1975 Oct; 83(4): 567–8

    PubMed  CAS  Google Scholar 

  13. Cryer DR, Mills DJ, Nicholas SP, et al. Comparative outcomes study of metformin intervention versus conventional approach. Diabetes Care 2005 Mar; 28(3): 539–43

    Article  PubMed  CAS  Google Scholar 

  14. Salpeter SR, Geryber E, Pasternak GA, et al. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev 2010 Jan; (1): CD002967

  15. Bolen S, Feldman L, Vassy J, et al. Systematic review: comparative effectiveness and safety of oral medications for type 2 diabetes mellitus. Ann Intern Med 2007 Sept; 147(6): 386–99

    PubMed  Google Scholar 

  16. Bodmer M, Jick SS, Meier C, et al. Metformin, sulfonylureas, or other antidiabetes drugs and the risk of lactic acidosis or hypoglycaemia. Diabetes Care 2008 Nov; 31(11): 2086–91

    Article  PubMed  CAS  Google Scholar 

  17. Brown JB, Pedula K, Barzilay J, et al. Lactic acidosis rates in type 2 diabetes. Diabetes Care 1998 Oct; 21(10): 1659–63

    Article  PubMed  CAS  Google Scholar 

  18. Fulop M, Hoberman H. Phenformin-associated metabolic acidosis. Diabetes 1976 Apr; 25(4): 292–6

    Article  PubMed  CAS  Google Scholar 

  19. Lalau J, Race J. Lactic acidosis in metformin therapy: searching for a link with metformin in reports of ‘metformin-associated lactic acidosis’. Diabetes Obes Metab 2001 Jun; 3(3): 195–201

    Article  PubMed  CAS  Google Scholar 

  20. Lalau J, Lacroix C, Compagnon P, et al. Role of metformin accumulation in metformin-associated lactic acidosis. Diabetes Care 1995 June; 18(6): 779–84

    Article  PubMed  CAS  Google Scholar 

  21. Lalau J, Race J, Brinquin L. Lactic acidosis in metformin therapy: relationship between plasma metformin concentration and renal function [letter]. Diabetes Care 1998 Aug; 21(8): 1366–7

    Article  PubMed  CAS  Google Scholar 

  22. Lalau J, Race J. Lactic acidosis in metformin-treated patients: prognostic value of arterial lactate levels and plasma metformin concentrations. Drug Saf 1999 Apr; 20(4): 377–84

    Article  PubMed  CAS  Google Scholar 

  23. Lalau J, Race J. Metformin and lactic acidosis in diabetic humans. Diabetes Obes Metab 2000 Jun; 2(3): 131–7

    Article  PubMed  CAS  Google Scholar 

  24. Lacroix C, Danger P, Wojciechowski F. Microassay of plasma and erythrocyte metformin by high performance liquid chromatography [in French]. Ann Biol Clin (Paris) 1991; 49(2): 98–101

    CAS  Google Scholar 

  25. Ahmad S, Beckett M. Recovery from pH 6.38: lactic acidosis complicated by hypothermia. Emerg Med 2002 Mar; 19(2): 169–71

    Article  CAS  Google Scholar 

  26. Lalau J, Lacroix C. Measurement of metformin concentration in erythrocytes: clinical implications. Diabetes Obes Metab 2003 Mar; 5(2): 92–8

    Article  Google Scholar 

  27. Robert F, Fendri S, Hary L, et al. Kinetics of plasma and erythrocyte metformin after acute administration in healthy subjects. Diabetes Metab 2003 Jun; 29(3): 279–83

    Article  PubMed  CAS  Google Scholar 

  28. Stades AME, Heikens JT, Erkelens DW, et al. Metformin and lactic acidosis: cause or coincidence? A review of case reports. J Intern Med 2004 Feb; 255(2): 179–87

    Article  PubMed  CAS  Google Scholar 

  29. Leverve X. Lactic acidosis: a new insight? Minerva Anestesiol 1999 May; 65(5): 205–9

    PubMed  CAS  Google Scholar 

  30. Maran A, Cranston I, Lomas J, et al. Protection by lactate of cerebral function during hypoglycemia. Lancet 1994 Jan; I: 16–20

    Article  Google Scholar 

  31. Vincent J. Lactate levels in critically ill patients. Acta Anaesthesiol Scand 1995; 39 Suppl. 107: 261–6

    Article  Google Scholar 

  32. Veneman T, Mitrakou A, Mokan M, et al. Effect of hyperketonemia and hyperlacticacidemia on symptoms, cognitive dysfunction, and counterregulatory hormone responses during hypoglycemia in normal humans. Diabetes 1994 Nov; 43(11): 1311–7

    Article  PubMed  CAS  Google Scholar 

  33. King P, Parkin H, McDonald IAB, et al. The effect of intravenous lactate on cerebral function during hypoglycemia. Diabet Med 1997 Jan; 14(1): 19–28

    Article  PubMed  CAS  Google Scholar 

  34. King P, Kong M, Parkin H, et al. Intravenous lactate prevents cerebral dysfunction during hypoglycemia in insulin-dependent diabetes mellitus. Clin Sci 1998 Feb; 94(2): 157–63

    PubMed  CAS  Google Scholar 

  35. Cusi K, Consoli A, DeFronzo R. Metabolic effects of metformin on glucose and lactate in non insulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1996 Nov; 96(11): 4059–67

    Article  Google Scholar 

  36. Wiernsperger N, Bayley C. The antihyperglycaemic effect of metformin: therapeutic and cellular mechanisms. Drugs 1999; 58 Suppl. 1: 31–9

    Article  PubMed  CAS  Google Scholar 

  37. Wilcock C, Bayley C. Sites of metformin-stimulated metabolism. Biochem Pharmacol 1990 Jun; 39(11): 1831–4

    Article  PubMed  CAS  Google Scholar 

  38. Bailey C, Wilcock C, Day C. Effect of metformin on glucose metabolism in the splanchnic bed. Br J Pharmacol 1992 Apr; 105(4): 1009–15

    Article  PubMed  CAS  Google Scholar 

  39. Radziuk J, Zhang Z, Wiernsperger N, et al. Effects of metformin on lactate uptake and gluconeogenesis in the perfused rat liver. Diabetes 1997 Sep; 46(4): 1406–13

    Article  PubMed  CAS  Google Scholar 

  40. Leverve X, Guigas B, Detaille D, et al. Mitochondrial metabolism and type-2 diabetes: a specific target of metformin. Diabetes Metab 2003 Sep; 29 (4 Pt 2): 6S88–94

    Article  PubMed  CAS  Google Scholar 

  41. Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 2000 Jun; 348 (Pt 3): 607–14

    Article  PubMed  CAS  Google Scholar 

  42. Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001 Oct; 108(8): 1167–74

    PubMed  CAS  Google Scholar 

  43. Foretz M, Leclerc J, Hebrard S, Viollet B. Metformin inhibits hepatic gluconeogenesis through an AMPK-independent mechanism [abstract no. 1507]. 68th Scientific Sessions of the American Diabetic Association; 2008 Jun 6–10; San Francisco (CA), A423

  44. Wang DS, Jonker JW, Kato Y, et al. Involvement of organic cation transporter 1 in the hepatic and intestinal distribution of metformin. J Pharmacol Exp Ther 2002; 63(4): 844–8

    Google Scholar 

  45. Shu Y, Sheardown SA, Brown C, et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest 2007 Feb; 117(2): 1422–31

    Article  PubMed  CAS  Google Scholar 

  46. Wang DS, Kusuhara H, Kato Y, et al. Involvement of organic cation transporter 1 in the lactic acidosis caused by metformin. Mol Pharmacol 2003 Apr; 63(4): 844–8

    Article  PubMed  CAS  Google Scholar 

  47. Dykens JA, Jamieson J, Marroquin L, et al. Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro. Toxicol Appl Pharmacol 2008; 233: 203–10

    Article  PubMed  CAS  Google Scholar 

  48. Wilcock C, Wyre N, Bailey C. Subcellular distribution of metformin in rat liver. J Pharm Pharmacol 1991 Jun; 43(6): 442–4

    Article  PubMed  CAS  Google Scholar 

  49. Wilcock C, Bayley C. Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica 1994 Jan; 24(1): 49–57

    Article  PubMed  CAS  Google Scholar 

  50. Lalau J, Andrejak M, Morinière P, et al. Hemodialysis in the treatment of lactic acidosis in diabetics treated by metformin: a study of metformin elimination. Int J Clin Pharmacol Ther Toxicol 1989 Jun; 24(6): 683–93

    Google Scholar 

  51. Lalau J, Masmoudi K. Unexpected recovery from prolonged hypoglycaemic coma: a protective role of metformin [letter]? Intens Care Med 2005 Mar; 31(3): 493

    Article  Google Scholar 

  52. Assan R, Heuclin C, Ganeval D, et al. Metformin-induced lactic acidosis in the presence of acute renal failure. Diabetologia 1977 May; 13(3): 211–7

    Article  PubMed  CAS  Google Scholar 

  53. Lalau J, Mourlhon C, Bergeret A, et al. Consequences of metformin intoxication [letter]. Diabetes Care 1998 Nov; 21(11): 2036–7

    Article  PubMed  CAS  Google Scholar 

  54. European prescribing information for Glucophage®. Lyon: Merck Serono, 2005

  55. Holstein A, Stumvoll M. Contraindications can damage your health: is metformin a case in point? Diabetologia 2005 Dec; 48(12): 2454–9

    Article  PubMed  CAS  Google Scholar 

  56. Fontana L. Modulating human aging and age-associated diseases. Biochim Biophys Acta 2009 Oct; 1790(10): 1133–8

    Article  PubMed  CAS  Google Scholar 

  57. Tahrani AA, Varughese GI, Scarpello JH, et al. Metformin, heart failure, and lactic acidosis: is metformin absolutely contraindicated? BMJ 2007 Sept; 335: 508–12

    Article  PubMed  CAS  Google Scholar 

  58. Gjedde S, Christiansen A, Pedersen S, et al. Survival following a metformin overdose of 63 g: a case report. Pharmacol Toxicol 2003 Aug; 93(2): 98–9

    Article  PubMed  CAS  Google Scholar 

  59. Knaus WA, Wagner DP, Draper EA, et al. The APACHE III prognostic system: risk prediction of hospital mortality for critically ill hospitalized adults. Chest 1991 Dec; 100(6): 1619–36

    Article  PubMed  CAS  Google Scholar 

  60. Nyirenda MJ, Sandeep T, Grant I, et al. Severe acidosis in patients taking metformin: rapid reversal and survival despite high APACHE score. Diabet Med 2006 Apr; 23(4): 432–5

    Article  PubMed  CAS  Google Scholar 

  61. Dell’Aglio D, Perino LJ, Kazzi Z, et al. Acute metformin overdose: examining serum pH, lactate level, and metformin concentrations in survivors versus nonsurvivors: a systematic review of the literature. Ann Emerg Med 2009 Dec; 54(6): 818–23

    Article  PubMed  Google Scholar 

  62. Gras V, Bouffandeau B, Montravers P, et al. Effect of metformin on survival rate in experimental sepsis. Diabetes Metab 2006 Apr; 32(2): 147–50

    Article  PubMed  CAS  Google Scholar 

  63. Bouskela E, Wiensperger N. Effects of metformin on hemorrhagic shock, blood volume and ischemia/reperfusion on nondiabetic hamsters. J Vasc Med Biol 1993; 4: 41–6

    Google Scholar 

  64. Wiernsperger N. 50 years later: is metformin a vascular drug with antidiabetic properties? Br J Vasc Dis 2007 Sept/Oct; 7(5): 204–10

    Article  CAS  Google Scholar 

  65. Chan JCN, Davidons JA. Survival benefits of metformin in high-risk populations. In: Bailey CJ, Campbell IW, Chan JCN et al., editors. Metformin: the gold standard. Chichester: Wiley, 2007: 125–34

    Google Scholar 

  66. Scarpello JHB, Howlett HCS. Metformin therapy and clinical uses. Diabetes Vasc Dis Res 2008 Sept; 5(3): 157–67

    Article  Google Scholar 

  67. Sirtori C, Franceschini G, Gianfranceschi G et al. Metformin improves peripheral vascular flow in non hyperlipidemic patients with arterial disease. J Cardiovasc Pharmacol 1984 Sep/Oct; 6(5): 914–23

    Article  PubMed  CAS  Google Scholar 

  68. Group UKPDS. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998 Sept; II: 854–65

    Google Scholar 

  69. Kao J, Tobis J, McClelland RL, et al. Relation of metformin treatment to clinical events in diabetic patients undergoing percutaneous intervention. Am J Cardiol 2004 Jun; 93(11): 1347–50

    Article  PubMed  CAS  Google Scholar 

  70. Sgambato S, Varrichio M, Tesauro P, et al. The use of metformin in ischemic cardiopathy. Clin Ther 1980 Jul; 94(1): 77–85

    CAS  Google Scholar 

  71. Eurich DT, Tsuyuki RT, Majundar SR, et al. Improved clinical outcome associated with metformin in patients with diabetes and heart failure. Diabetes Care 2005 Oct; 28(10): 2345–51

    Article  PubMed  CAS  Google Scholar 

  72. Masoudi FA, Inzucchi SE, Wang Y, et al. Thiazolidinediones, metformin, and outcomes in older patients with diabetes and heart failure: an observational study. Circulation 2005 Feb; 111(5): 583–90

    Article  PubMed  CAS  Google Scholar 

  73. Evans JMM, Ogston SA, Emslie-Smith A, et al. Risk of mortality and adverse cardiovascular outcomes in type 2 diabetes: a comparison of patients treated with sulfonylureas and metformin. Diabetologia 2006 May; 49(5): 930–6

    Article  PubMed  CAS  Google Scholar 

  74. Montanari G, Bondioli A, Rizzato G, et al. Treatment with low dose metformin in patients with peripheral vascular disease. Pharmacol Res 1992 Jan; 25(1): 63–73

    Article  PubMed  CAS  Google Scholar 

  75. Kakkar AK, Besterman WH, Lefer DJ. Preconditioning of the diabetic myocardium with acute metformin treatment. J Am Coll Cardiol 2004; 3: 1116–21

    Google Scholar 

  76. Weil M, Afifi A. Experimental and clinical studies on lactate and pyruvate as indicators of the severity of acute circulatory failure (shock). Circulation 1970 Jun; 41(6): 989–1001

    Article  PubMed  CAS  Google Scholar 

  77. Cady Jr L, Weil M, Afifi A, et al. Quantisation of severity of critical illness with special reference to blood lactate. Crit Care Med 1973 Mar/Apr; 1(2): 75–80

    Article  PubMed  Google Scholar 

  78. Batandier C, Guigas B, Detaille D, et al. The ROS production induced by a reverse-electron flux at respiratory complex 1 is hampered by metformin. J Bioenerg Biomembr 2006 Feb; 38(1): 33–42

    Article  PubMed  CAS  Google Scholar 

  79. Detaille D, Guigas B, Chauvin C, et al. Metformin prevents high-glucose-induced endothelial cell death through a mitochondrial permeability transition-dependent process. Diabetes 2005 Jul; 54(7): 2179–87

    Article  PubMed  CAS  Google Scholar 

  80. Arieff A, Gertz E, Park R, et al. Lactic acidosis and the cardiovascular system in the dog. Clin Sci 1983 Jun; 64(6): 573–80

    PubMed  CAS  Google Scholar 

  81. Scheen A. Clinical pharmacokinetics of metformin. Clin Pharmacokinet 1996 May; 30(5): 359–71

    Article  PubMed  CAS  Google Scholar 

  82. Lalau J, Race J, Andreeli F, et al. Metformin retention independent of renal failure in intestinal occlusion. Diabetes Metab 2001 Feb; 27(1): 24–8

    PubMed  CAS  Google Scholar 

  83. Levey AS, Bosch JP, Lewis JB, et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 1999 Mar; 130(6): 461–70

    PubMed  CAS  Google Scholar 

  84. Warren RE, Strachan MWJ, Wild S, et al. Introducing estimated glomerular filtration rate (eGFR) into clinical practice in the UK: implications for the use of metformin. Diabet Med 2007 May; 24(5): 494–7

    Article  PubMed  CAS  Google Scholar 

  85. Shaw JS, Wilmot RL, Kilpatrick ES. Establishing pragmatic estimated GFR thresholds to guide metformin prescribing. Diabet Med 2007 Oct; 24(10): 1160–3

    Article  PubMed  CAS  Google Scholar 

  86. Lalau J, Vermersch A, Hary L, et al. Type 2 diabetes in the elderly: an assessment of metformin. Int J Clin Pharmacol Ther Toxicol 1990 Aug; 28(8): 329–32

    PubMed  CAS  Google Scholar 

  87. Rachmani R, Slavachevski I, Levi Z, et al. Metformin in patients with type 2 diabetes mellitus: reconsideration of traditional contraindications. Eur J Intern Med 2002 Oct; 13(7): 428–33

    Article  PubMed  CAS  Google Scholar 

  88. Johnson JA, Majumdar SR, Simpson SH, et al. Decreased mortality associated with the use of metformin compared with sulfonylurea monotherapy in type 2 diabetes. Diabetes Care 2002 Dec; 25(12): 2244–8

    Article  PubMed  CAS  Google Scholar 

  89. Cohen R. Role of the liver and the kidney in acid-base regulation and its disorders. Br J Anesthesiol 1991 Aug; 67(2): 154–64

    Article  CAS  Google Scholar 

  90. Seidowsky A, Nseir S, Houdret N, et al. Metformin-associated lactic acidosis: a prognosis and therapeutic study. Crit Care Med 2009 Jul; 37(7): 2191–6

    Article  PubMed  CAS  Google Scholar 

  91. Pugh RN, Murray-Lyon IM, Dawson JL, et al. Transection of the oesophagus for bleeding oesophageal varices. Br J Surg 1973 Aug; 60(8): 646–9

    Article  PubMed  CAS  Google Scholar 

  92. Emslie-Smith AM, Boyle DI, Evans JM, et al. Contraindications to metformin therapy in patients with type 2 diabetes: a population-based study of adherence to prescribing guidelines. Diabetic Med 2001 Jun; 18(6): 483–8

    Article  PubMed  CAS  Google Scholar 

  93. Holstein A, Nahrwold D, Hinze S, et al. Contraindications to metformin are largely discarded. Diabetic Med 1999 Aug; 16(8): 692–6

    Article  PubMed  CAS  Google Scholar 

  94. Jones GC, Macklin JP, Alexander WD. Contraindications to the use of metformin. Evidence suggests that it is time to amend the list. BMJ 2003 Apr; 326: 4–5

    Article  PubMed  CAS  Google Scholar 

  95. McCormack J, Johns K, Tildesley H. Metformin’s contraindications should be contraindicated. CAMJ 2005 Aug; 173(5): 502–4

    Article  Google Scholar 

  96. Prikis M, Mesler EL, Hood VL, et al. When a friend can become an enemy! Recognition and management of metformin-associated lactic acidosis. Kidney Int 2007 Nov; 72(9): 1157–60

    Article  PubMed  CAS  Google Scholar 

  97. Golay A. Metformin and body weight. Int J Obes 2008 Jan; 32(1): 61–72

    Article  CAS  Google Scholar 

  98. El-Mir MY, Detaille D, R-Villanueva G, et al. Neuroprotective role of antidiabetic drug metformin against apoptotic cell death in primary cortical neurons. J Mol Neurosci 2008; 34(1): 77–87

    Article  PubMed  CAS  Google Scholar 

  99. Libby G, Alessi DR, Donnelly LA, et al. New users of metformin are at low risk of incident cancer. Diabetes Care 2009 Sept; 32(9): 1620–5

    Article  PubMed  CAS  Google Scholar 

  100. Zhen D, Chen Y, Tang X. Metformin reverses the deleterious effects of high glucose on osteoblast function. J Diabetes Complications. Epub 2009 Jul 21

  101. Amiel SA, Dixon T, Mann R, et al. Hypoglycaemia in type 2 diabetes. Diabet Med 2008 Mar; 25(3): 245–54

    Article  PubMed  CAS  Google Scholar 

  102. Mitri J, Hamdy O. Diabetes medications and body weight. Expert Opin Drug Saf 2009 Sep; 8(5): 573–84

    Article  PubMed  CAS  Google Scholar 

  103. Patel RR. Thiazolidinediones and congestive heart failure: a judicious balance of risks and benefits. Cardiol Rev 2009 May–Jun; 17(3): 132–5

    Article  PubMed  Google Scholar 

  104. Habib ZA, Havstad SL, Wells K, et al. Thiazolidinedione use and the longitudinal risk of fractures in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2010 Feb; 95(2): 592–600

    Article  PubMed  CAS  Google Scholar 

  105. Monami M, Balzi D, Lamanna C, et al. Are sulphonylureas all the same? A cohort study on cardiovascular and cancer-related mortality. Diabetes Metab Res Rev 2007 Sep; 23(6): 479–84

    Article  PubMed  CAS  Google Scholar 

  106. Draznin B. Mitogenic action of insulin: friend, foe or ‘frenemy’? Diabetologia 2010 Feb; 53(2): 229–33

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No funding was received for the preparation of this review. Jean-Daniel Lalau has been a compensated speaker for Boehringer-Ingelheim, Eli Lilly, Novartis, Novo Nordisk, Sanofi-aventis and Takeda.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Daniel Lalau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lalau, JD. Lactic Acidosis Induced by Metformin. Drug-Safety 33, 727–740 (2010). https://doi.org/10.2165/11536790-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11536790-000000000-00000

Keywords

Navigation