Skip to main content
Log in

Invariant sets and Knaster-Tarski principle

  • Review Article
  • Published:
Central European Journal of Mathematics

Abstract

Our aim is to point out the applicability of the Knaster-Tarski fixed point principle to the problem of existence of invariant sets in discrete-time (multivalued) semi-dynamical systems, especially iterated function systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abian S., Brown A.B., A theorem on partially ordered sets, with applications to fixed point theorems, Canad. J. Math., 1961, 13, 78–82

    Article  MathSciNet  MATH  Google Scholar 

  2. Akhmerov R.R., Kamenskiĭ M.I., Potapov A.S., Rodkina A.E., Sadovskiĭ B.N., Measures of Noncompactness and Condensing Operators, Oper. Theory Adv. Appl., 55, Birkhäuser, Basel, 1992

    Google Scholar 

  3. Akin E., The General Topology of Dynamical Systems, Grad. Stud. Math., 1, American Mathematical Society, Providence, 1993

    MATH  Google Scholar 

  4. Andres J., Fišer J., Metric and topological multivalued fractals, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2004, 14(4), 1277–1289

    Article  MathSciNet  MATH  Google Scholar 

  5. Andres J., Fišer J., Gabor G., Leśniak K., Multivalued fractals, Chaos Solitons Fractals, 2005, 24(3), 665–700

    Article  MathSciNet  MATH  Google Scholar 

  6. Andres J., Górniewicz L., Topological Fixed Point Principles for Boundary Value Problems, Topol. Fixed Point Theory Appl., 1, Kluwer, Dordrecht, 2003

    MATH  Google Scholar 

  7. Andres J., Väth M., Calculation of Lefschetz and Nielsen numbers in hyperspaces for fractals and dynamical systems, Proc. Amer. Math. Soc., 2007, 135(2), 479–487

    Article  MathSciNet  MATH  Google Scholar 

  8. Ayerbe Toledano J.M., Domínguez Benavides T., López Acedo G., Measures of Noncompactness in Metric Fixed Point Theory, Oper. Theory Adv. Appl., 99, Birkhäuser, Basel, 1997

    Book  MATH  Google Scholar 

  9. Banaś J., Goebel K., Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Appl. Math., 60, Marcel Dekker, New York, 1980

    MATH  Google Scholar 

  10. Bandt Ch., On the metric structure of hyperspaces with Hausdorff metric, Math. Nachr., 1986, 129, 175–183

    Article  MathSciNet  MATH  Google Scholar 

  11. Barbashin E.A., On the theory of general dynamical systems, Učenye Zap. Moskov. Gos. Univ. Matematika, 1948, 135(2), 110–133 (in Russian)

    Google Scholar 

  12. Barnsley M.F., Demko S., Iterated function systems and the global construction of fractals, Proc. Roy. Soc. London Ser. A, 1985, 399(1817), 243–275

    Article  MathSciNet  MATH  Google Scholar 

  13. Barnsley M.F., Vince A., Real projective iterated function systems, J. Geom. Anal. (in press), DOI: 10.1007/s12220-011-9232-x

  14. Beer G., Topologies on Closed and Closed Convex Sets, Math. Appl., 268, Kluwer, Dordrecht, 1993

    Google Scholar 

  15. Birkhoff G.D., Dynamical Systems, American Mathematical Society, New York, 1927

    MATH  Google Scholar 

  16. Bloom S.L., Ésik Z., The equational logic of fixed points, Theoret. Comput. Sci., 1997, 179(1–2), 1–60

    Article  MathSciNet  MATH  Google Scholar 

  17. Bogdewicz A., Herburt I., Moszyńska M., Quotient metrics with applications in convex geometry, Beitr. Algebra Geom. (in press), DOI: 10.1007/s13366-011-0082-2

  18. Carl S., Heikkilä S., Fixed Point Theory in Ordered Sets and Applications, Springer, New York, 2011

    Book  MATH  Google Scholar 

  19. Chueshov I.D., Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Univ. Lektsii Sovrem. Mat., AKTA, Kharkov, 1999 (in Russian)

    MATH  Google Scholar 

  20. Conley C., Isolated Invariant Sets and the Morse Index, CBMS Regional Conf. Ser. in Math., 38, American Mathematical Society, Providence, 1978

    Google Scholar 

  21. Conley C., Easton R., Isolated invariant sets and isolating blocks, Trans. Amer. Math. Soc., 1971, 158, 35–61

    Article  MathSciNet  MATH  Google Scholar 

  22. Conti G., Obukhovskiĭ V., Zecca P., On the topological structure of the solution set for a semilinear functionaldifferential inclusion in a Banach space, In: Topology in Nonlinear Analysis, Warsaw, September 5–18 and October 10–15, 1994, Banach Center Publ., 35, Polish Academy of Sciences, Institute of Mathematics, Warsaw, 1996, 159–169

    Google Scholar 

  23. De Blasi F.S., Georgiev P.Gr., Hukuhara’s topological degree for non compact valued multifunctions, Publ. Res. Inst. Math. Sci., 2003, 39(1), 183–203

    Article  MathSciNet  MATH  Google Scholar 

  24. De Blasi F.S., Myjak J., A remark on the definition of topological degree for set-valued mappings, J. Math. Anal. Appl., 1983, 92(2), 445–451

    Article  MathSciNet  MATH  Google Scholar 

  25. Edalat A., Dynamical systems, measures and fractals via domain theory, Inform. and Comput., 1995, 120(1), 32–48

    Article  MathSciNet  MATH  Google Scholar 

  26. Edwards R.E., Functional Analysis. Theory and Applications, Holt, Rinehart and Winston, New York-Toronto-London, 1965

    MATH  Google Scholar 

  27. Elton J.H., An ergodic theorem for iterated maps, Ergodic Theory Dynam. Systems, 1987, 7(4), 481–488

    Article  MathSciNet  MATH  Google Scholar 

  28. Fečkan M., Topological Degree Approach to Bifurcation Problems, Topol. Fixed Point Theory Appl., 5, Springer, New Yok, 2008

    Google Scholar 

  29. Fleiner T., A fixed-point approach to stable matchings and some applications, Math. Oper. Res., 2003, 28(1), 103–126

    Article  MathSciNet  MATH  Google Scholar 

  30. Góebel K., Kirk W.A., Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math., 28, Cambridge University Press, Cambridge, 1990

    Google Scholar 

  31. Górniewicz L., Topological Fixed Point Theory of Multivalued Mappings, 2nd ed., Topol. Fixed Point Theory Appl., 4, Springer, Dordrecht, 2006

    MATH  Google Scholar 

  32. Granas A., Dugundji J., Fixed Point Theory, Springer Monogr. Math., Springer, New York, 2003

    Google Scholar 

  33. Hale J.K., Asymptotic Behavior of Dissipative Systems, Math. Surveys Monogr., 25, American Mathematical Society, Providence, 1988

    Google Scholar 

  34. Hata M., On some properties of set-dynamical systems, Proc. Japan Acad. Ser. A Math. Sci., 1985, 61(4), 99–102

    Article  MathSciNet  MATH  Google Scholar 

  35. Hayashi S., Self-similar sets as Tarski’s fixed points, Publ. Res. Inst. Math. Sci., 1985, 21(5), 1059–1066

    Article  MathSciNet  MATH  Google Scholar 

  36. Heikkilä S., On fixed points through a generalized iteration method with applications to differential and integral equations involving discontinuities, Nonlinear Anal., 1990, 14(5), 413–426

    Article  MathSciNet  MATH  Google Scholar 

  37. Heikkilä S., Fixed point results and their applications to Markov processes, Fixed Point Theory Appl., 2005, 3, 307–320

    Google Scholar 

  38. Hitzler P., Seda A.K., Generalized metrics and uniquely determined logic programs, Theoret. Comput. Sci., 2003, 305(1–3), 187–219

    Article  MathSciNet  MATH  Google Scholar 

  39. Hu S., Papageorgiou N.S., Handbook of Multivalued Analysis I, Math. Appl., 419, Kluwer, Dordrecht, 1997

    Google Scholar 

  40. Hutchinson J.E., Fractals and self-similarity, Indiana Univ. Math. J., 1981, 30(5), 713–747

    Article  MathSciNet  MATH  Google Scholar 

  41. Illanes A., Nadler S.B. Jr., Hyperspaces, Monogr. Textbooks Pure Appl. Math., 216, Marcel Dekker, New York, 1999

    Google Scholar 

  42. Iosifescu M., Iterated function systems. A critical survey, Math. Rep. (Bucur.), 2009, 11(61)(3), 181–229

    MathSciNet  Google Scholar 

  43. Jachymski J., Order-theoretic aspects of metric fixed point theory, In: Handbook of Metric Fixed Point Theory, Kluwer, Dordrecht, 2001, 613–641

    Google Scholar 

  44. Jachymski J., Gajek L., Pokarowski P., The Tarski-Kantorovitch principle and the theory of iterated function systems, Bull. Austral. Math. Soc., 2000, 61(2), 247–261

    Article  MathSciNet  MATH  Google Scholar 

  45. Joseph J.E., Multifunctions and graphs, Pacific J. Math., 1978, 79(2), 509–529

    MathSciNet  MATH  Google Scholar 

  46. Kantorovitch L., The method of successive approximation for functional equations, Acta Math., 1939, 71, 63–97

    Article  MathSciNet  Google Scholar 

  47. Kieninger B., Iterated Function Systems on Compact Hausdorff Spaces, PhD thesis, Universität Augsburg, 2002

  48. Knaster B., Un théorème sur les fonctions d’ensembles, Annales de la Société Polonaise de Mathématique, 1928, 6, 133–134

    MATH  Google Scholar 

  49. Krasnosel’skii M.A., Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964

    Google Scholar 

  50. Kuratowski C., Topologie I, Monogr. Mat., 20, PWN, Warsaw, 1958

    Google Scholar 

  51. Lasota A., Myjak J., Attractors of multifunctions, Bull. Polish Acad. Sci. Math., 2000, 48(3), 319–334

    MathSciNet  MATH  Google Scholar 

  52. Leśniak K., Extremal sets as fractals, Nonlinear Anal. Forum, 2002, 7(2), 199–208

    MathSciNet  MATH  Google Scholar 

  53. Leśniak K., Stability and invariance of multivalued iterated function systems, Math. Slovaca, 2003, 53(4), 393–405

    MathSciNet  MATH  Google Scholar 

  54. Leśniak K., Infinite iterated function systems: a multivalued approach, Bull. Pol. Acad. Sci. Math., 2004, 52(1), 1–8

    Article  MathSciNet  MATH  Google Scholar 

  55. Leśniak K., Fixed points of the Barnsley-Hutchinson operators induced by hyper-condensing maps, Matematiche (Catania), 2005, 60(1), 67–80

    MathSciNet  MATH  Google Scholar 

  56. Leśniak K., On the Lifshits constant for hyperspaces, Bull. Pol. Acad. Sci. Math., 2007, 55(2), 155–160

    Article  MathSciNet  MATH  Google Scholar 

  57. Leśniak K., Note on the Kuratowski theorem for abstract measures of noncompactness, preprint available at www-users.mat.umk.pl/_much/works/kuratow.ps

  58. Marchaud A., Sur les champs de demi-droites et les équations différentielles du premier ordre, Bull. Soc. Math. France, 1934, 62, 1–38

    MathSciNet  Google Scholar 

  59. Mauldin R.D., Urbański M., Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc. (3), 1996, 73(1), 105–154

    Article  MathSciNet  MATH  Google Scholar 

  60. McGehee R., Attractors for closed relations on compact Hausdorff spaces, Indiana Univ. Math. J., 1992, 41(4), 1165–1209

    Article  MathSciNet  MATH  Google Scholar 

  61. Melnik V.S., Valero J., On attractors of multivalued semi-flows and differential inclusions, Set-Valued Anal., 1998, 6(1), 83–111

    Article  MathSciNet  Google Scholar 

  62. Ok E.A., Fixed set theory for closed correspondences with applications to self-similarity and games, Nonlinear Anal., 2004, 56(3), 309–330

    Article  MathSciNet  MATH  Google Scholar 

  63. d’Orey V., Fixed point theorems for correspondences with values in a partially ordered set and extended supermodular games, J. Math. Econom., 1996, 25(3), 345–354

    Article  MathSciNet  MATH  Google Scholar 

  64. Petruşel A., Rus I.A., Dynamics on (P cp(X), H d) generated by a finite family of multi-valued operators on (X, d), Math. Morav., 2001, 5, 103–110

    MATH  Google Scholar 

  65. Ponomarev V.I., On common fixed set for two continuous multivalued selfmappings of bicompactum, Colloq. Math. 1963, 10, 227–231 (in Russian)

    MathSciNet  MATH  Google Scholar 

  66. Ran A.C.M., Reurings M.C.B., A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 2004, 132(5), 1435–1443

    Article  MathSciNet  MATH  Google Scholar 

  67. Schröder B.S.W., Algorithms for the fixed point property, Theoret. Comput. Sci., 1999, 217(2), 301–358

    Article  MathSciNet  MATH  Google Scholar 

  68. Šeda V., On condensing discrete dynamical systems, Math. Bohem., 2000, 125(3), 275–306

    MathSciNet  MATH  Google Scholar 

  69. Soto-Andrade J., Varela F.J., Self-reference and fixed points: a discussion and an extension of Lawvere’s theorem, Acta Appl. Math., 1984, 2(1), 1–19

    Article  MathSciNet  MATH  Google Scholar 

  70. Stenflo Ö., A survey of average contractive iterated function systems, J. Difference Equ. Appl., 2012, 18(8), 1355–1380

    Article  MATH  Google Scholar 

  71. Strother W., Fixed points, fixed sets, and M-retracts, Duke Math. J., 1955, 22(4), 551–556

    Article  MathSciNet  MATH  Google Scholar 

  72. Tarafdar E.U., Chowdhury M.S.R., Topological Methods for Set-Valued Nonlinear Analysis, World Scientific, Hackensack, 2008

    Book  MATH  Google Scholar 

  73. Tarski A., A lattice-theoretical fixpoint theorem and its applications, Pacific J. Math., 1955, 5(2), 285–309

    MathSciNet  MATH  Google Scholar 

  74. de Vries J., Elements of Topological Dynamics, Math. Appl., 257, Kluwer, Dordrecht, 1993

    Google Scholar 

  75. Waszkiewicz P., Kostanek M., Reconciliation of elementary order and metric fixpoint theorems (manuscript)

  76. Wicks K.R., Fractals and Hyperspaces, Lecture Notes in Math., 1492, Springer, Berlin, 1991

    Google Scholar 

  77. Yamaguchi M., Hata M., Kigami J., Transl. Math. Monogr., 167, Mathematics of Fractals, American Mathematical Society, Providence, 1997

    Google Scholar 

  78. Zaremba S.C., Sur les équations au paratingent, Bull. Sci. Math., 1936, 60, 139–160

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Leśniak.

About this article

Cite this article

Leśniak, K. Invariant sets and Knaster-Tarski principle. centr.eur.j.math. 10, 2077–2087 (2012). https://doi.org/10.2478/s11533-012-0109-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11533-012-0109-4

MSC

Keywords

Navigation