Skip to main content
Log in

Synthesis and characterization of new optically active poly(amide-imide)s derived from N,N′-(pyromellitoyl) bis-L-tyrosine and various diamines

  • Research Article
  • Published:
Materials Science-Poland

Abstract

Five new optically active poly(amide-imide)s(PAIs) 5a–e were prepared by direct polycondensation reaction of N,N′- (pyromellitoyl) bis-L-tyrosine 3 as chiral dicarboxylic acid with various aromatic diamines 4a–e. Triphenylphosphite(TPP)/pyridine(py) in the presence of calcium chloride (CaCl2) and N-methyl-2-pyrrolidone (NMP) were successfully applied to direct polycondensation reaction. The resulting new polymers were obtained in good yields with inherent viscosities ranging between 0.48 dL/g and 0.6 dL/g. They were analyzed with a C.H.N. elemental analyzer, FTIR, 1H-NMR, UV-VIS spectroscopy and polarimeter (specific rotation measurement, [α] 25D ). Thermogravimetric analysis (TGA) indicated that the residual weight percentage of polymers at 600 °C were between 48.66 % and 64.21 %, which showed their thermal stability. These polymers are attractive to be used as packing materials in chromatography columns for separation of enantiomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mittal K.L. (Ed.), Polyimides: Synthesis, Characterization and Application, Vol. 1, and 2, Plenum, New York, 1984.

    Google Scholar 

  2. Ghosh M.K., Mittal (Eds.), Polyimides Fundamentals and Application, Marcel Dekker, New York, 1996.

    Google Scholar 

  3. Higashi F., Nishi T., J. Polym. Sci. Pol. Chem., 26 (1988), 3235.

    Article  CAS  Google Scholar 

  4. Feger C., Khojasteh M., Htoo M. (Eds), Advances in Polyimide Science and Technology, Technomic, Lancaster, 1993.

    Google Scholar 

  5. Chun Is., Kim S.Y., Macromolecule, 33 (2000), 3190.

    Article  Google Scholar 

  6. Easmond G.C., Paprotny J., Irwin Rs., Macromolecule, 29 (1996), 1382.

    Article  Google Scholar 

  7. Ghaemy M., Alizadeh R., Behmadi H., Eur. Polym. J., 45 (2007), 3108.

    Article  Google Scholar 

  8. Yang Cp., Liou Gs., Chen Rs., Yang Cy., J. Sci. Polym. Chem., 108 (2000), 113.

    Google Scholar 

  9. Spiliopoules I.K., Mikroyannids J.A., Macromolecules, 31 (1998), 1236.

    Article  Google Scholar 

  10. Orzezko A., Mirowsk I., Makromol. Chem., 191 (1990), 701.

    Article  Google Scholar 

  11. Lin Ch., Xi-gao J., Chinese Journal of Polymer Science, Vol. 22, No. 4 (2004), 389.

    Google Scholar 

  12. Zhejiang Hu. Shanjun Li., Chunhua Z., Journal of Applied Polymer Science, Vol. 106 (2007), 2494.

    Article  Google Scholar 

  13. Kyung B.S., Jae K.J., Seung J. Ch., Young-taik H., Dong H.S., Die Angewandte Macromolecular Chemie, 264 (1999), 30.

    Article  Google Scholar 

  14. Malkpour S., Hajipour A., Shahmohamadi M., J. Appl. Polym. Sci., 89 (2003), 116.

    Article  Google Scholar 

  15. Ion S., Revue Roumaine de Chimie, 53(9), (2008), 795.

    Google Scholar 

  16. Lin Ch., Xi-gao J., Chinese Journal of Polymer Science, Vol. 22, No. 4 (2004), 389.

    Google Scholar 

  17. Khalil F., Meisam Sh., Science China Chemistry, Vol. 53, No. 3 (2010), 581.

    Article  CAS  Google Scholar 

  18. Der-jang L., Feng-chyvan Ch., Man-kit L., Meng-yen Ch., Klaus M., Macromolecules, 38 (2005), 4024.

    Article  Google Scholar 

  19. Ming-hsiang Sh., Jian-ween Hu. Mei-chen Hu., Chiun-chia K., Wei-chynan, Mou-Yang Y., Polymer Bulletin, 60 (2008), 597.

    Article  Google Scholar 

  20. Zhang Q., Lis L., Zhang S., Polymer, 48 (2007), 6246.

    Article  CAS  Google Scholar 

  21. Sheng-huei, Chin-ping Y., Guey-sheng L., European Polymer Journal, 41 (2005), 511.

    Article  Google Scholar 

  22. Mallakpour S., Kowsari E., Polym. Adv. Technol., 16 (2005), 466.

    Article  CAS  Google Scholar 

  23. Mallakpour S., Kowsari E., Polym. Bull., 54 (2005), 147.

    Article  CAS  Google Scholar 

  24. Khalil F., Meisam S., Mohsen H., Macromolecular Research, Vol. 17, No. 11 (2009), 912.

    Article  Google Scholar 

  25. Khalil F., Morteza A., Mohsen H., J. Braz. Chem. Soc., Vol. 20, No. 10 (2009), 1931.

    Article  Google Scholar 

  26. Liaw Dj. Chang Fc., Liuwang Ki., Faghihi Kh., Lee Kr., Lai Jy., J. Appl. Polym. Sci., 104 (2007), 3096.

    Article  CAS  Google Scholar 

  27. Khalil F., Mohsen H., Materials Science-Poland, Vol. 28, No. 2 (2010), 197.

    Google Scholar 

  28. Subramanian G., Chiral Separation Techniques, Wiley-VCH, New York Ch. 1 (2001).

    Google Scholar 

  29. Hopkins T.E., Pawlow J.H., Koren D.L., Deters K.S., Solivan S.M., Davis J.A., Gomez J.F., and Wagener K.B., Macromolecules, 34 (2001), 7920.

    Article  CAS  Google Scholar 

  30. Shina Mh., Huargh Jw., Hunag My., Polym. Bull., 60 (2008), 597.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. I. Khalaf.

About this article

Cite this article

Khalaf, H.I., Wady, A.N. & Daham, H.K. Synthesis and characterization of new optically active poly(amide-imide)s derived from N,N′-(pyromellitoyl) bis-L-tyrosine and various diamines. Mater Sci-Pol 31, 43–51 (2013). https://doi.org/10.2478/s13536-012-0077-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13536-012-0077-1

Keywords

Navigation