Skip to main content
Log in

Bounds on the solution of a Cauchy-type problem involving a weighted sequential fractional derivative

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper we establish some bounds for the solution of a Cauchytype problem for a class of fractional differential equations with a weighted sequential fractional derivative. The bounds are based on a Bihari-type inequality and a bound on the Gauss hypergeometric function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Agarwal, Y. Zhou, and Y. He, Existence of fractional neutral functional differential equations. Computers and Math. with Appl. 59 (2010), 1095–1100.

    Article  MathSciNet  MATH  Google Scholar 

  2. H. K. Avad and A. V. Glushak, On perturbations of abstract fractional differential equations by nonlinear operators. J. of Mathematical Sciences 170, No 3 (2010), 306–323.

    Article  MathSciNet  Google Scholar 

  3. A. Babakhani and D. Baleanu, Employing of some basic theory for class of fractional differential equations. Advances in Difference Equations 2011 (2011), 1–13.

    Article  MathSciNet  Google Scholar 

  4. B. Baeumer, M. M. Meerschaert, and E. Nane, Brownian subordinators and fractional Cauchy problems. Trans. Amer. Math. Soc. 361 (2009), 3915–3930.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Baleanu, Z. B. Güvenç, and J. A. Tenreiro Machado (Eds.), New Trends in Nanotechnology and Fractional Calculus Applications. Springer, 2010.

  6. R. Caponetto, G. Dongola, L. Fortuna, and I. Petráš, Fractional Order Systems: Modeling and Control Applications. Vol. 72 of World Sci. Ser. on Nonlinear Science, World Scientific, 2010.

  7. G. Chai, Existence results for boundary value problems of nonlinear fractional differential equations. Computers and Math. with Appl. 62 (2011), 2374–2382.

    Article  MATH  Google Scholar 

  8. K. Diethelm, The Analysis of Fractional Differential Equations. Springer, 2010.

  9. D. Fulger, E. Scalas, and G. Germano, Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation. Phys. Review E: Stat., Nonlinear and Soft Matter Physics 77 (2008), 021122–021122.

    Article  Google Scholar 

  10. K. M. Furati, A Cauchy-type problem involving a weighted sequential derivative. In: The 5th IFAC Symp. on Fractional Differentiation and its Applications (FDA12), Nanjing, China, 2012.

  11. K. M. Furati, A Cauchy-type problem with a sequential fractional derivative in the space of continuous functions. Boundary Value Problems 2012 (2012), 58 (14 pages); doi:10.1186/1687-2770-2012-58.

  12. K. M. Furati, M. D. Kassim, and N. e. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative. Computers and Math. with Appl. (2012), In press.

  13. E. Gerolymatou, I. Vardoulakis, and R. Hilfer, Modelling infiltration by means of a nonlinear fractional diffusion model. J. of Physics D: Applied Physics 39 (2006), 4104–4110.

    Article  Google Scholar 

  14. A. V. Glushak, Cauchy-type problem for an abstract differential equation with fractional derivatives. Mathematical Notes 77, No 1 (2005), 26–38; Transl. from Matemat. Zametki 77, No 1 (2005), 28–41.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. V. Glushak, On the properties of a Cauchy-type problem for an abstract differential equation with fractional derivatives. Mathematical Notes 82, No 5 (2007), 596–607; Transl. from Matemat. Zametki 82, No 5 (2007), 665–677.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. V. Glushak, Correctness of Cauchy-type problems for abstract differential equations with fractional derivatives. Russian Mathematics 53, No 9 (2009), 0–19. Transl. from Izvestiya Vysshikh Uchebn. Zaved., Matematika No 9 (2009), 13–24.

    Article  MathSciNet  Google Scholar 

  17. R. Hilfer (Ed.), Applications of Fractional Calculus in Physics. World Scientific, Singapore, 2000.

    MATH  Google Scholar 

  18. R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials. Chemical Physics 284 (2002), 399–408.

    Article  Google Scholar 

  19. R. Hilfer and L. Anton, Fractional master equations and fractal time random walks. Phys. Review E 51 (1995), R848–R851.

    Article  Google Scholar 

  20. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations. Vol. 204 of Mathematics Studies Ser., Elsevier, Amsterdam, 2006.

    Book  MATH  Google Scholar 

  21. M. Kirane and S. A. Malik, The profile of blowing-up solutions to a nonlinear system of fractional differential equations. Nonlinear Analysis 73 (2010), 3723–3736.

    Article  MathSciNet  MATH  Google Scholar 

  22. V. Kiryakova, Generalized Fractional Calculus and Applications. Pitman Res. Notes in Math. Ser. No 301, Longman & J. Wiley Ltd., Harlow — New York, 1994.

    MATH  Google Scholar 

  23. V. Kiryakova, A brief story about the operators of the generalized fractional calculus. Fract. Calc. Appl. Anal. 11, No 2 (2008), 203–220; at http://www.math.bas.bg/~fcaa.

    MathSciNet  MATH  Google Scholar 

  24. R. Klages, G. Radons, and I. Sokolov (Eds.), Anomalous Transport: Foundations and Applications. Wiley-VCH, Weinheim, 2008.

    Google Scholar 

  25. V. Lakshmikantham, S. Leela, and J. V. Devi, Theory of Fractional Dynamic Systems. Cambridge Scientific Publ., Cambridge, 2009.

    MATH  Google Scholar 

  26. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London, 2010.

    Book  MATH  Google Scholar 

  27. F. Mainardi and R. Gorenflo, Time-fractional derivatives in relaxation processes: A tutorial survey. Fract. Calc. Appl. Anal. 10, No 3 (2007), 269–308; at http://www.math.bas.bg/~fcaa.

    MathSciNet  MATH  Google Scholar 

  28. A. C. McBride, Fractional Calculus and Integral Transforms of Generalized Functions. Pitman Res. Notes in Math. Ser., Longman Sci. Techn., Harlow, 1979.

    MATH  Google Scholar 

  29. M. M. Meerschaert and A. Sikorskii, Stochastic Models for Fractional Calculus, Vol. 43 of De Gruyter Studies in Mathematics, De Gruyter, Berlin, 2012.

    MATH  Google Scholar 

  30. R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339, No 1 (2000), 1–77.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. W. Michalski, Derivatives of Noninteger Order and their Applications. PhD Thesis, Polska Akademia Nauk, 1993.

  32. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley & Sons, Inc., 1993.

  33. C. A. Monje, Y. Chen, B. M. Vinagre, D. Xue, and V. Feliu, Fractional-Order Systems and Controls. Advances in Industrial Control, Springer, 2010.

  34. M. D. Ortigueira, Fractional Calculus for Scientists and Engineers. Vol. 84 of Lecture Notes in Electrical Engineering, Springer, 2011.

  35. B. G. Pachpatte, Inequalities for Differential and Integral Equations. Vol. 197 of Mathematics in Science and Engineering, Acad. Press, 1998.

  36. I. Petráš, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer, 2011.

  37. I. Podlubny, Fractional Differential Equations. Vol. 198 of Mathematics in Science and Engineering, Acad. Press, 1999.

  38. B. L. S. P. Rao, Statistical Inference for Fractional Diffusion Processes. Wiley, 2010.

  39. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach, Amsterdam, 1993; Engl. Trans. from the Russian Ed., 1987.

    MATH  Google Scholar 

  40. T. Sandev and Ž. Tomovski, General time fractional wave equation for a vibrating string. J. of Physics A: Math. and Theoretical 43 (2010), 055204.

    Article  MathSciNet  Google Scholar 

  41. E. Scalas, R. Gorenflo, and F. Mainardi, Fractional calculus and continuous-time finance. Physica A 284 (2000), 376–384.

    Article  MathSciNet  Google Scholar 

  42. E. Scalas, R. Gorenflo, F. Mainardi, and M. Meerschaert, Speculative option valuation and the fractional diffusion equation. In: J. Sabatier and J. T. Machado (Eds.), Proc. IFAC Workshop on Fractional Differentiation and its Applications (FDA 04), Bordeaux, 2004.

  43. T. Wenchang, P. Wenxiao, and X. Mingyu, A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates. Intern. J. of Non-Linear Mechanics 38 (2003), 645–650.

    Article  MATH  Google Scholar 

  44. S. Zhang and X. Su, The existence of a solution for a fractional differential equation with nonlinear boundary conditions considered using upper and lower solutions in reverse order. Computers and Math. with Appl. 62 (2011), 1269–1274.

    Article  MathSciNet  MATH  Google Scholar 

  45. Y. Zhang, D. A. Benson, M. M. Meerschaert, E. M. LaBolle, and H. P. Scheffler, Random walk approximation of fractional-order multiscaling anomalous diffusion. Physical Review E 74 (2006), 026706–026715.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled M. Furati.

About this article

Cite this article

Furati, K.M. Bounds on the solution of a Cauchy-type problem involving a weighted sequential fractional derivative. fcaa 16, 171–188 (2013). https://doi.org/10.2478/s13540-013-0012-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-013-0012-0

MSC 2010

Key Words and Phrases

Navigation