Skip to main content
Log in

Kinetics of the Interaction of Colistin with Live Escherichia coli Cells by the Bioluminescence Method

  • Published:
Moscow University Chemistry Bulletin Aims and scope

Abstract

We obtain the kinetic dependences of the concentration of adenosine-5'-triphosphate (ATP) inside (ATPin) and outside (ATPex) E. coli cells on the colistin concentration and incubation in a nutrient LB medium and saline using the optimized bioluminescence method. With an increase in the concentration of colistin and the duration of incubation of cells in a nutrient medium, the ATPin value rapidly decreases to zero. In this case, the ATPex value increases, reaching the limit (20–30% of the initial ATPin value), and does not change even after the complete cell death. The significant decrease in ATPin can be explained by the decrease in the activity of the enzymes of the respiratory chain and ATP synthase, functioning in the inner membrane of the cell, damage to which during incubation with colistin leads to a decrease in the rate and even to a cessation of ATP synthesis. A comparison of ATPin and ATPex during the incubation of cells in a nutrient medium and saline in the presence of colistin show that colistin has a more substantial bactericidal effect on growing, metabolically active cells. In contrast, nongrowing cells deprived of nutrition are more resistant to antibiotic action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Hancock, R.E.W. and Chapple, D.S., Antimicrob. Agents Chemother., 1999, vol. 43, p. 1317.

    Article  CAS  Google Scholar 

  2. Velkov, T., Thompson, P.E., Nation, R.L., and Li, J., J. Med. Chem., 2010, vol. 53, p. 1898.

    Article  CAS  Google Scholar 

  3. Moubareck, C.A., Membranes, 2020, vol. 10, p. 181.

    Article  CAS  Google Scholar 

  4. Olaitan, A.O., Morand, S., and Rolain, J.M., Front. Microbiol., 2014, vol. 5, p. 643.

    Article  Google Scholar 

  5. Mortensen, N.P., Fowlkes, J., and Sullivan, C.J., Langmuir, 2009, vol. 25, p. 3728.

    Article  CAS  Google Scholar 

  6. Sahalan, A.Z. and Dixon, R.A., Int. J. Antimicrob. Agents, 2008, vol. 31, p. 224.

    Article  CAS  Google Scholar 

  7. Trimble, M.J., Mlynarcik, P., Kolar, M., and Hancock, R.E., Cold Spring Harbor Perspect. Med., 2016, vol. 6, a025288.

    Article  Google Scholar 

  8. Lu, S., Walters, G., Parg, R., and Dutcher, J.R., Soft Matter, 2014, vol. 10, p. 1806.

    Article  CAS  Google Scholar 

  9. Clausell, A., Garcia-Subirats, M., Pujol, M., Busquets, M.A., Rabanal, F., and Cajal, Y., J. Phys. Chem. B, 2007, vol. 111, p. 551.

    Article  CAS  Google Scholar 

  10. Deris, Z.Z., Akter, J., Sivanesan, S., Roberts, K.D., Thompson, P.E., Nation, R.L., Li, J., and Velkov, T., J. Antibiot., 2014, vol. 67, p. 147.

    Article  CAS  Google Scholar 

  11. Levashov, P.A., Sedov, S.A., Shipovskov, S., Be-logurova, N.G., and Levashov, A.V., Anal. Chem., 2010, vol. 82, p. 2161.

    Article  CAS  Google Scholar 

  12. Matolygina, D.A., Osipova, E.E., Smirnov, S.A., and Belogurova, N.G., Eremeev, N.L., Tishkov, V.I., Levashov, A.V., and Levashov, P.A., Moscow Univ. Chem. Bull. (Engl. Transl.), 2015, vol. 70, p. 292.

  13. Lomakina, G.Yu., Modestova, Yu.A., and Ugarova, N.N., Biochemistry (Moscow), 2015, vol. 80, p. 701.

    Article  CAS  Google Scholar 

  14. Ugarova, N.N., Lomakina, G.Yu., Modestova, Yu.A., Chernikov, S.V., Vinokurova, N.V., and Gorbachev, V.Y., J. Microbiol. Methods, 2016, vol. 130, no. 1, p. 48.

    Article  CAS  Google Scholar 

  15. Ugarova, N.N., Lomakina, G.Yu., Perevyshina, T.A., Otrashevskaya, E.V., and Chernikov, S.V., Moscow Univ. Chem. Bull. (Engl. Transl.), 2019, vol. 74, p. 191.

  16. Ugarova, N.N., Koksharov, M.I., and Lomakina, G.Y., RF Patent 2420594, 2009.

  17. Koksharov, M.I. and Ugarova, N.N., Protein Eng., Des. Sel., 2011, vol. 24, p. 835.

    Article  CAS  Google Scholar 

  18. Mempin, R., Tran, H., Chen, C., Gong, H., Ho, K.K., and Lu, S., BMC Microbiol., 2013, vol. 13, p. 301.

    Article  Google Scholar 

  19. Spari, D. and Beldi, G., Int. J. Mol. Sci., 2020, vol. 21, p. 5590.

    Article  CAS  Google Scholar 

  20. Ihssen, J., Jovanovic, N., Sirec, T., and Spitz, U., PLoS One, 2021, vol. 16, e0244200.

    Article  CAS  Google Scholar 

Download references

Funding

This study was performed as part of state registration topic no. AAAA-A21-121011290089-4 of the Moscow State University.

Author information

Authors and Affiliations

Authors

Contributions

Each author made an equivalent contribution to the preparation of the publication.

Corresponding author

Correspondence to N. N. Ugarova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Abbreviations: Luc, firefly luciferase; ATP, adenosine-5'-triphosphate; AMP, adenosine-5'-monophosphate; PPi, pyrophosphate; RLU, relative light units; DMSO, dimethyl sulfoxide; ATPtot, the total concentration of ATP in the cell suspension; ATPin, the concentration of intracellular ATP in the cell suspension; ATPex, the concentration of extracellular ATP in the cell suspension; CFU, colony-forming unit.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lomakina, G.Y., Ugarova, N.N. Kinetics of the Interaction of Colistin with Live Escherichia coli Cells by the Bioluminescence Method. Moscow Univ. Chem. Bull. 77, 42–47 (2022). https://doi.org/10.3103/S0027131422010059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027131422010059

Keywords:

Navigation