Skip to main content
Log in

Mathematical Methods of Subjective Modeling in Scientific Research: I. The Mathematical and Empirical Basis

  • Theoretical and Mathematical Physics (Review)
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

mathematical formalism for subjective modeling, based on modelling of uncertainty, reflecting unreliability of subjective information and fuzziness that is common for its content. The model of subjective judgments on values of an unknown parameter xX of the model M(x) of a research object is defined by the researcher–modeler as a space1 (X, p(X), \(P{I^{\bar x}}\), \(Be{l^{\bar x}}\)) with plausibility\(P{I^{\bar x}}\) and believability \(Be{l^{\bar x}}\) measures, where x is an uncertain element taking values in X that models researcher—modeler’s uncertain propositions about an unknown xX, measures \(P{I^{\bar x}}\), \(Be{l^{\bar x}}\) model modalities of a researcher–modeler’s subjective judgments on the validity of each xX: the value of \(P{I^{\bar x}}(\tilde x = x)\) determines how relatively plausible, in his opinion, the equality \((\tilde x = x)\) is, while the value of \(Be{l^{\bar x}}(\tilde x = x)\) determines how the inequality \((\tilde x = x)\) should be relatively believed in. Versions of plausibility Pl and believability Bel measures and pl- and bel-integrals that inherit some traits of probabilities, psychophysics and take into account interests of researcher–modeler groups are considered. It is shown that the mathematical formalism of subjective modeling, unlike “standard” mathematical modeling, •enables a researcher–modeler to model both precise formalized knowledge and non-formalized unreliable knowledge, from complete ignorance to precise knowledge of the model of a research object, to calculate relative plausibilities and believabilities of any features of a research object that are specified by its subjective model \(M(\tilde x)\), and if the data on observations of a research object is available, then it: •enables him to estimate the adequacy of subjective model to the research objective, to correct it by combining subjective ideas and the observation data after testing their consistency, and, finally, to empirically recover the model of a research object.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. P. Pyt’ev, Moscow Univ. Phys. Bull. 72, 1 (2017). https://doi.org/10.3103/S002713491701012X

    Article  ADS  Google Scholar 

  2. Yu. P. Pyt’ev, Math. Models Comput. Simul. 5, 538 (2013). doi doi 10.1134/S2070048213060094

    Article  MathSciNet  Google Scholar 

  3. Yu. P. Pyt’ev, Possibility as an Alternative to Probability, 2nd ed. (Fizmatlit, Moscow, 2016).

    Google Scholar 

  4. Yu. P. Pyt’ev, Intellekt. Sist. 11, 277 (2007).

    MathSciNet  Google Scholar 

  5. A. L. Tulup’ev, S. I. Nikolenko, and A. V. Sirotkin, Bayesian Networks: A Logical–Probabilistic Approach (Nauka, St. Petersburg, 2000).

    MATH  Google Scholar 

  6. A. Jøsang and R. Hankin, in Proc. 15th International Conference on Information Fusion, Singapore, 2012. https://pdfs.semanticscholar. org/1189/3bcadf7582e1c96e72ccf75aa0ef41a72 e88.pdf.

    Google Scholar 

  7. A. M. Mironov, Intellekt. Sist. 11, 201 (2007).

    Google Scholar 

  8. Applied Fuzzy Systems, Ed. by T. Terano, K. Asai, and M. Sugeno (Elsevier, 1989).

    MATH  Google Scholar 

  9. Fuzzy Set and Possibility Theory. Recent Developments, Ed. by R. R. Yager (Pergamon, New York, 1982).

    MATH  Google Scholar 

  10. D. A. Balakin, Yu. M. Nagornyi, and Yu. P. Pyt’ev, in Proc. Int. Conf. “Infinite-Dimensional Analysis, Stochastics, and Mathematical Modeling: New Problems and Methods,” Moscow, Russia, 2014, p. 190.

    Google Scholar 

  11. V. Bhavsar and A. M. Mironov, in Proc. Workshop on Multivalued Logic Programming and Applications, Seattle, United States, 2006, p. 73.

    Google Scholar 

  12. R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter, Probabilistic Networks and Expert Systems: Exact Computational Methods for Bayesian Networks (Springer, New York, 1999).

    MATH  Google Scholar 

  13. G. Shafer, A Mathematical Theory of Evidence (Princeton Univ. Press, 1976).

    MATH  Google Scholar 

  14. A. Jøsang, in Proc. 11th Workshop on Preferences and Soft Constraints, Perugia, Italy, 2011. http://home.ifi.uio.no/josang/papers/Jos2011- SofT.pdf.

    Google Scholar 

  15. S. S. Stevens, Psychophysics (Wiley, New York, 1975).

    Google Scholar 

  16. A. A. Jøsang, Int. J. Unc. Fuzz. Knowl. Based Syst. 09, 279 (2001).

    Article  Google Scholar 

  17. G. J. Klir, Uncertainty and Information: Foundations of Generalized Information Theory (Wiley, 2006).

    MATH  Google Scholar 

  18. E. T. Jaynes, IEEE Trans. Syst. Sci. Cybern. 4, 227 (1998).

    Article  Google Scholar 

  19. H. Jeffreys, Proc. R. Soc. London A 186, 453 (1946).

    Article  ADS  Google Scholar 

  20. L. Zadeh, AI Mag. 7 (2), 85 (1986).

    Google Scholar 

  21. P. Wang, in Proc. 10th Conf. on Uncertainty in Artifical Intelligence, Seattle, United States, 1994, p. 560.

    Google Scholar 

  22. R. R. Yager, Inf. Sci. 41 (2), 93 (1987).

    Article  MathSciNet  Google Scholar 

  23. T. Inagaki, IEEE Trans. Reliab. 40, 182 (1991).

    Article  MathSciNet  Google Scholar 

  24. D. Dubois and H. Prade, in Reliability Data Collection and Analysis, Ed. by J. Flamm and T. Luisi (Springer, 1992), p. 213.

  25. F. Smarandache, Int. J. Appl. Math. Stat. 2, 1 (2004).

    Google Scholar 

  26. M. A. Kłopotek and S. T. Wierzchoń, in Belief Functions in Business Decisions, Ed. by R. P. Srivastava and T. J. Mock (Springer, 2002), p. 62.

  27. D. A. Balakin, B. I. Volkov, T. G. Elenina, A. S. Kuznetsov, and Yu. P. Pyt’ev, Intellekt. Sist. 18 (2), 33 (2014).

    MathSciNet  Google Scholar 

  28. B. MacMillan, Ann. Math. Stat. 24, 196 (1953).

    Article  Google Scholar 

  29. Yu. P. Pyt’ev and I. A. Shishmarev, Probability Theory, Mathematical Statistics, and Elements of Possibility Theory for Physicists (Mosk. Gos. Univ., Moscow, 2010).

    Google Scholar 

  30. D. Dubois, H. T. Nguyen, and H. Prade, in Fundamentals of Fuzzy Sets, Ed. by D. Dubois and H. Prade (Kluwer Academic, Boston, 2000), p. 343.

  31. S. Guiasu, Information Theory with Applications (McGraw-Hill, New York, 1977).

    MATH  Google Scholar 

  32. Yu. P. Pyt’ev and G. S. Zhivotnikov, Intellekt. Sist. 6 (1–4), 63 (2002).

    Google Scholar 

  33. R. R. Yager, Fuzzy Sets Syst. 50, 279 (1992).

    Article  Google Scholar 

  34. H. E. Kyburg, Jr., and H. E. Smokler, Studies in Subjective Probability (Wiley, New York, 1964).

    MATH  Google Scholar 

  35. L. J. Savage, The Foundations of Statistics (Dover, New York, 1972).

    MATH  Google Scholar 

  36. Yu. P. Pyt’ev, Pattern Recognit. Image Anal., 27, 213 (2017), doi doi 10.1134/S1054661817020080

    Article  Google Scholar 

  37. J. Y. Halpern, Reasoning about Uncertainty (MIT Press, Cambridge, 2003).

    MATH  Google Scholar 

  38. Yu. P. Pyt’ev, Moscow Univ. Phys. Bull. 72, 113 (2017). https://doi.org/10.3103/S0027134917010131

    Article  ADS  Google Scholar 

  39. Yu. P. Pyt’ev, Possibility. Elements of Theory and Applications (Editorial URSS, Moscow, 2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. P. Pyt’ev.

Additional information

Original Russian Text © Yu.P. Pyt’ev, 2018, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2018, No. 1, pp. 3–17.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pyt’ev, Y.P. Mathematical Methods of Subjective Modeling in Scientific Research: I. The Mathematical and Empirical Basis. Moscow Univ. Phys. 73, 1–16 (2018). https://doi.org/10.3103/S0027134918010125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134918010125

Keywords

Navigation