Skip to main content
Log in

Temperature Effect on the Thermal Dissolution of Coal

  • Published:
Solid Fuel Chemistry Aims and scope Submit manuscript

Abstract

The main process characteristics of the thermal dissolution of grade Zh coal in the anthracene fraction of coking tar depending on temperature and reaction time were determined. It was established that the effective extraction of quinoline-soluble products occurred in a temperature range of coal conversion into a plastic state. The process proceeded selectively; at 350–380°C, the yield of the quinoline-soluble products was 71–75%. In this case, the yield of toluene-soluble products did not exceed 10%, and the yield of gas was 0.5%. At a higher temperature and a long reaction time (>2 h), a sharp decrease in the characteristics of thermal dissolution occurred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Granda, M., Blanco, C., Alvarez, P., Patrick, J.W., and Menendez, R., Chem. Rev., 2014, vol. 114, p. 1608.

    Article  CAS  Google Scholar 

  2. Kostikov, V.I., Samoilov, V.M., Beilina, N.Yu., and Ostronov, B.G., Ross. Khim. Zh., 2004, no. 5, p. 64.

    Google Scholar 

  3. Sidorov, O.F. and Seleznev, A.N., Ross. Khim. Zh., 2006, no. 1, p. 16.

    Google Scholar 

  4. Rudyka, V.I. and Malina, V.P., Koks Khim., 2010, no. 12, p. 2.

    Google Scholar 

  5. Khairutdinov, I.R., Akhmetov, M.M., and Telyashev, E.G., Ross. Khim. Zh., 2006, no. 1, p. 25.

    Google Scholar 

  6. Andreikov, E.I., Khim. Interesakh Ustoich. Razvit., 2016, no. 3, p. 317.

    Google Scholar 

  7. Golovin, G.S. and Maloletnev, A.S., Kompleksnaya pererabotka uglei i povyshenie effektivnosti ikh ispol’zovaniya (Complex Processing of Coals and Increase of the Effectiveness of Coal Utilization), Shchadov, V.M, Ed., Moscow: NTK Trek, 2007.

  8. Maloletnev, A.S. and Shpirt, M.Ya., Ross. Khim. Zh., 2008, no. 6, p. 44.

    Google Scholar 

  9. Mochida, I., Okuma, O., and Yoon, S.-H., Chem. Rev., 2014, vol. 114, p. 1637.

    Article  CAS  Google Scholar 

  10. Kuznetsov, P.N., Kuznetsova, L.I., Buryukin, F.A., Marakushina, E.N., and Frizorger, V.K., Solid Fuel Chem., 2015, vol. 49 P, p. 213.

    Article  CAS  Google Scholar 

  11. Shkoller, M.B. and Proshunin, Yu.E., Koks Khim., 2008, no. 1, p. 12.

    Google Scholar 

  12. Shui, H., Zhao, W., Shan, C., Shui, T., Pan, C., Wang, Z., Lei, Z., Ren, S., and Kang, S., Fuel Proc. Tech., 2014, vol. 118, p. 64.

    Article  CAS  Google Scholar 

  13. Cheng, X., Li, G., Peng, Y., Song, S., Shi, X., Wu, J., Xie, J., Zhou, M., and Hu, G., Chem. Tech. Fuels Oils, 2012, vol. 48, p. 349.

    Article  CAS  Google Scholar 

  14. Rahman, M., Samanta, A., and Gupta, R., Fuel Proc. Tech., 2013, vol. 115, p. 88.

    Article  CAS  Google Scholar 

  15. Takanohashi, T., Shishido, T., Kawashima, H., and Saito, I., Fuel, 2008, vol. 87, p. 592.

    Article  CAS  Google Scholar 

  16. Yoshida, T., Li, C., and Takanohashi, T., Fuel Proc. Tech., 2004, vol. 86, p. 61.

    Article  CAS  Google Scholar 

  17. Takanohashi, T., Shishido, T., and Saito, I., Energy Fuels, 2008, vol. 22, p. 1779.

    Article  CAS  Google Scholar 

  18. Technical and Economical Assessment of Mild Coal Extraction: Subcontract No 2691-UK-DOE-1874. Final Report, Univ. of Kentucky, 2005.

  19. Stansberry, P.G., Zondlo, J.W., and Wombles, R.H., Light Metals, 2001, p. 581.

    Google Scholar 

  20. Kuznetsov, P.N., Marakushina, E.N., Kazbanova, A.V., Kolesnikova, S.M., Kuznetsova, L.I., Buryukin, F.A., and Kositcyna, S.S., Am. J. Appl. Sci., 2016, vol. 13, p. 7.

    Article  CAS  Google Scholar 

  21. Kolesnikova, S.M., Kamenskii, E.S., Perminov, N.V., Pavlenko, N.I., and Kuznetsov, P.N., Coke Chem., 2016, vol. 59, p. 384.

    Article  Google Scholar 

  22. Kuznetsov, P.N., Kamenskiy, E.S., and Kuznetsova, L.I., Energy Fuels, 2017, vol. 31, p. 5402.

    Article  CAS  Google Scholar 

  23. Kuznetsov, P.N., Marakushina, E.N., Buryukin, F.A., and Ismagilov, Z.R., Khim. Interesakh Ustoich. Razvit., 2016, no. 3, p. 325.

    Google Scholar 

  24. Korolev, Yu.M. and Gagarin, S.G., Solid Fuel Chem., 2003, no. 3, p. 13.

    Google Scholar 

  25. Skripchenko, G.B., Khim. Tverd. Topl. (Moscow), 2009, no. 6, p. 7.

    Google Scholar 

  26. Sobkowiak, M. and Painter, P., Fuel, 1992, vol. 71, p. 1105.

    Article  CAS  Google Scholar 

  27. Krichko, A.A., Gulmaliev, A.M., Gladun, T.G., and Gagarin, S.G., Fuel, 1992, vol. 71, p. 303.

    Article  Google Scholar 

  28. Nishioka, M., Fuel, 1993, vol. 72, p. 1719.

    Article  CAS  Google Scholar 

  29. Okuyama, N., Komatsu, N., Shigehisa, T., Kaneko, T., and Tsuruya, S., Fuel Proc. Tech., 2004, vol. 85, p. 947.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Kuznetsov.

Additional information

Original Russian Text © P.N. Kuznetsov, E.S. Kamenskii, S.M. Kolesnikova, F.A. Buryukin, N.V. Perminov, N.I. Pavlenko, O.Yu. Fetisova, 2018, published in Khimiya Tverdogo Topliva, 2018, No. 3, pp. 24–30.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, P.N., Kamenskii, E.S., Kolesnikova, S.M. et al. Temperature Effect on the Thermal Dissolution of Coal. Solid Fuel Chem. 52, 163–168 (2018). https://doi.org/10.3103/S0361521918030060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0361521918030060

Keywords

Navigation