Skip to main content
Log in

Protection of Coherent Pulse Radars against Combined Interferences. 2. Analysis of Influence of Decorrelating Factors on Efficiency of Adaptive Sequential STSP

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

This is the second paper in a series of articles devoted to modern methods of protection of coherent-pulse radars against the combined interference (i.e., an additive mixture of internal noise, masking clutter and noise jamming). Quantitative analysis of the influence of decorrelating factors on the efficiency of sequential adaptive systems with separate space-time signal processing (STSP) against the background of combined interference has been performed under conditions when the spatial processing with noise jamming compensation precedes the inter-period processing with clutter compensation. The analysis-based values of energy losses during the fluctuations of the random estimate of the spatial processing weight vector obtained for each sounding period over the limited size classified sample of noise jamming confirm the need to fix (store) this vector for the period of the inter-period clutter compensation. It is shown that the additional lack of classification of the training sample of interference increases the energy losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. D. I. Lekhovytskiy, V. P. Riabukha, A. V. Semeniaka, D. V. Atamanskiy, Y. A. Katiushyn, "Protection of coherent pulse radars against combined interferences. 1. Modifications of STSP systems and their ultimate performance capabilities," Radioelectron. Commun. Syst., v.62, n.7, p.311 (2019). DOI: https://doi.org/10.3103/S073527271907001X.

    Article  Google Scholar 

  2. Y. D. Shirman, S. T. Bagdasaryan, A. S. Malyarenko, D. I. Lekhovitskii, Radio Electronic Systems. Principles of Construction and Theory. Reference Book (Radiotekhnika, Moscow, 2007).

    Google Scholar 

  3. J. Ward, Space-time adaptive processing for airborne radar: Technical Report No. 1015 (Massachusetts, 1994).

  4. R. Klemm, Principles of Space-Time Adaptive Processing (Institution of Engineering and Technology, 2006). DOI: https://doi.org/10.1049/PBRA021E.

    Book  Google Scholar 

  5. W.-D. Wirth, Radar Techniques Using Array Antennas (Institution of Engineering and Technology, 2013). DOI: https://doi.org/10.1049/PBRA026E.

    Book  Google Scholar 

  6. J. R. Guerci, Space-Time Adaptive Processing for Radar (Artech House, 2014).

    Google Scholar 

  7. W. L. Melvin, "Space-Time Adaptive Processing for Radar," in Communications and Radar Signal Processing (2014). DOI: https://doi.org/10.1016/B978-0-12-396500-4.00012-0.

    Chapter  Google Scholar 

  8. C. Wortham, Space-time adaptive processing for ground surveillance radar (2007).

  9. J. Xu, S. Zhu, G. Liao, "Space-time-range adaptive processing for airborne radar systems," IEEE Sensors J., v.15, n.3, p.1602 (2015). DOI: https://doi.org/10.1109/JSEN.2014.2364594.

    Article  Google Scholar 

  10. T. Pető, R. Seller, "Space-time adaptive cancellation in passive radar systems," Int. J. Antennas Propag., v.2018, p.1 (2018). DOI: https://doi.org/10.1155/2018/2467673.

    Article  Google Scholar 

  11. V. Navratil, A. O’Brien, J. L. Garry, G. E. Smith, "Demonstration of space-time adaptive processing for DSI suppression in a passive radar," in 2017 18th International Radar Symposium (IRS) (IEEE, 2017). DOI: https://doi.org/10.23919/IRS.2017.8008146.

    Chapter  Google Scholar 

  12. A. I. Perov, S. P. Ippolitov, "Synthesis of an algorithm of space-time processing received satellite navigation signal and spoofing jamming," J. Sib. Fed. Univ. Math. Phys., v.10, n.4, p.429 (2017). DOI: https://doi.org/10.17516/1997-1397-2017-10-4-429-442.

    Article  MathSciNet  MATH  Google Scholar 

  13. T. Marathe, S. Daneshmand, G. Lachapelle, "Assessment of measurement distortions in GNSS antenna array space-time processing," Int. J. Antennas Propag., v.2016, p.1 (2016). DOI: https://doi.org/10.1155/2016/2154763.

    Article  Google Scholar 

  14. B. Kang, Robust covariance matrix estimation for radar space-time adaptive processing (STAP) (Pennsylvania, 2015).

  15. R. Li, J. Li, W. Zhang, Z. He, "Reduced-dimension space-time adaptive processing based on angle-Doppler correlation coefficient," EURASIP J. Adv. Signal Process., v.2016, n.1, p.97 (2016). DOI: https://doi.org/10.1186/s13634-016-0395-2.

    Article  Google Scholar 

  16. W. Wang, L. Zou, X. Wang, "Research on space-time adaptive processing with respect to the signal powers," Prog. Electromagn. Res. C, v.82, p.99 (2018). DOI: https://doi.org/10.2528/PIERC18011401.

    Article  Google Scholar 

  17. D. M. Piza, V. N. Lavrentiev, D. S. Semenov, "Method of forming of the classified training sample for automatic canceller of the interferences when using time-space filtering of signals," Radio Electron. Comput. Sci. Control, n.3, p.18 (2016). DOI: https://doi.org/10.15588/1607-3274-2016-3-2.

    Article  Google Scholar 

  18. D. M. Piza, G. V. Moroz, "Methods of forming classified training sample for adaptation of weight coefficient of automatic interference compensator," Radioelectron. Commun. Syst., v.61, n.1, p.32 (2018). DOI: https://doi.org/10.3103/S0735272718010041.

    Article  Google Scholar 

  19. D. M. Piza, T. I. Bugrova, V. M. Lavrentiev, D. S. Semenov, "Selector of classified training samples for spatial processing of signals under the impact of combined clutter and jamming," Radio Electron. Comput. Sci. Control, n.4, p.26 (2018). DOI: https://doi.org/10.15588/1607-3274-2017-4-3.

    Article  Google Scholar 

  20. D. M. Piza, S. N. Romanenko, D. S. Semenov, "Correlation method for forming the training sample for adaptation of the spatial filter," Radio Electron. Comput. Sci. Control, n.3 (2018). DOI: https://doi.org/10.15588/1607-3274-2018-3-4.

    Article  Google Scholar 

  21. D. M. Piza, T. I. Bugrova, V. N. Lavrentiev, D. S. Semenov, "Method of forming classified training sample in case of spacial signal processing under influence of combined interference," Radioelectron. Commun. Syst., v.61, n.7, p.325 (2018). DOI: https://doi.org/10.3103/S0735272718070051.

    Article  Google Scholar 

  22. V. P. Ryabukha, D. S. Rachkov, A. V. Semeniaka, I. A. Katiushyn, "Estimation of spatial weight vector fixation interval for sequential space-time signal processing against the background of combined interferences," Radioelectron. Commun. Syst., v.55, n.10, p.443 (2012). DOI: https://doi.org/10.3103/S0735272712100020.

    Article  Google Scholar 

  23. V. A. Alebastrov, E. S. Goikhman, I. M. Zamorin, A. A. Kolosov, V. A. Korado, F. A. Kuzminskii, B. S. Kukis, Foundations of Over-the-Horizon Radio Location (Radio i Svyaz’, Moscow, 1984).

    Google Scholar 

  24. D. M. Piza, A. P. Zalevskii, "Peculiarities of adaptation of spatial filters under exposure to combined interference," Radio Electron. Comput. Sci. Control, n.1, p.45 (2005). URI: http://ric.zntu.edu.ua/issue/view/1594/pdf_19.

    Google Scholar 

  25. I. D. Mai, A. G. Kaspirovich, V. A. Vinnik, A. I. Donchenko, V. N. Motyl, V. G. Antonenko, Radar Station 36D6. Operation Manual and Maintenance (Iskra, Zaporizhzhia, 2006).

    Google Scholar 

  26. Y. I. Abramovich, "Controlled method for adaptive optimization of filters using the criterion of maximum signal-to-noise ratio," Radio Eng. Electron. Phys., v.25, n.3, p.87 (1981).

    Google Scholar 

  27. V. P. Riabukha, A. V. Semeniaka, Y. A. Katiushyn, D. V. Atamanskiy, "Selection of parameters for band-diagonal regularization of maximum likelihood estimates of Gaussian interference correlation matrices and their inverses," Radioelectron. Commun. Syst., v.64, n.5, p.229 (2021). DOI: https://doi.org/10.3103/S0735272721050010.

    Article  Google Scholar 

  28. V. P. Riabukha, "Adaptive radar noise jamming protection systems. 4. The choice of quantity, structure and arrangement of compensation modules in a radar with a flat PAA," Appl. Radio Electron., v.16, n.1-2, p.3 (2017). URI: https://nure.ua/wp-content/uploads/2018/Scientific_editions/are_1.pdf.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Riabukha.

Ethics declarations

ADDITIONAL INFORMATION

V.P. Riabukha, A.V. Semeniaka, Ye.A. Katiushyn, D.V. Atamanskiy

The authors declare that they have no conflicts of interest.

This article does not contain any studies with human participants or animals performed by any of the authors.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347021110017 with DOI: https://doi.org/10.20535/S0021347021110017

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika, No. 11, pp. 659-672, November, 2021 https://doi.org/10.20535/S0021347021110017 .

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riabukha, V.P., Semeniaka, A.V., Katiushyn, Y.A. et al. Protection of Coherent Pulse Radars against Combined Interferences. 2. Analysis of Influence of Decorrelating Factors on Efficiency of Adaptive Sequential STSP. Radioelectron.Commun.Syst. 64, 573–583 (2021). https://doi.org/10.3103/S0735272721110017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272721110017

Navigation