Skip to main content
Log in

Mathematical modeling of radioaction impact on advanced spacecraft materials

  • Proceedings of the International Conference “Nuclei-2010. Methods of Nuclear Physics for Femto- and Nanotechnologies” (The 60th International Meeting on Nuclear Spectroscopy and the Structure of Atomic Nuclei)
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

This paper considers the structural features of nanotube-based polymer nanocomposites and describes the specifics of radiation impact on nanostructures. We use mathematical modeling to investigate mechanisms of the generation of radiation-induced defects in nanotubes, nanotube dispersion in polymers, and the absorption of radiation fluxes by some nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ajayan, P.M., Schadler, L.S., and Braun, P.V., Nano-composite Science and Technology, Weinheim: Wiley-VCH, 2003.

    Google Scholar 

  2. Nanoscale Science and Technology, Kelsall, R.W., Hamley, I.W., and Geoghegan, M., Eds., John Wiley & Sons, 2005.

  3. Ivanovskii, A.L., Usp. Khim., 2002, vol. 71, no. 3, p. 203.

    Google Scholar 

  4. Golberg, D., Bando, Y., Tang, Ch., and Zhi, Ch., Adv. Mater., 2007, vol. 19, p. 2413.

    Article  Google Scholar 

  5. Okua, T., Koi, N., and Suganuma, K., J. Phys. Chem. Solids, 2008, vol. 69, p. 1228.

    Article  ADS  Google Scholar 

  6. Chen, Y., Zou, J., Campbell, S.J., and Le Caer, G., Appl. Phys. Lett., 2004, vol. 84, no. 1, p. 2430.

    Article  ADS  Google Scholar 

  7. Novikov, L.S., Radiatsionnye vozdeistviya na materialy kosmicheskoi tekhniki (Radiation Effects on Materials of Space Technology), Moscow: Universitetskaya kniga, 2010.

    Google Scholar 

  8. Krasheninnikov, A.V. and Nordlund, K., J. Appl. Phys., 2010, vol. 107, p. 071301.

    Article  ADS  Google Scholar 

  9. Celik-Aktas, A., Stubbins, J.F., and Zuo, J.-M., J. Appl. Phys., 2007, vol. 102, p. 024310.

    Article  ADS  Google Scholar 

  10. Lehtinen, O., Nikitin, T., Krasheninnikov, A.V., et al., Phys. Status Solidi C, 2010, vol. 7, p. 1256.

    Google Scholar 

  11. Jin, Ch., Lin, F., Suenaga, K., and Iijima, S., Phys. Rev. Lett., 2009, vol. 102, p. 195505.

    Article  ADS  Google Scholar 

  12. Yu, J., Chen, Y., Elliman, R.G., and Petravic, M., Adv. Mater., 2006, vol. 18, p. 2157.

    Article  Google Scholar 

  13. Frauenheim, Th., et al., J. Phys.: Condens. Matter, 2002, vol. 14, p. 3015.

    Article  ADS  Google Scholar 

  14. Frenzel, J., Oliveira, A.F., Jardillier, N., et al., Semi-Relativistic, Self-Consistent Charge Slater-Koster Tables for Density-Functional Based Tight-Binding (DFTB) for Materials Science Simulations, TU-Dresden, 2004.

  15. Mayo, S.L., Olafson, B.D., and Goddard, W.A., J. Phys. Chem., 1990, vol. 94, p. 8897.

    Article  Google Scholar 

  16. Rappe, A.K., Casewit, C.J., Colwell, K.S., et al., Ski J. Am. Chem. Soc., 1992, vol. 114, p. 10024.

    Article  Google Scholar 

  17. Sun, H., J. Phys. Chem. B, 1998, vol. 102, p. 7338.

    Article  Google Scholar 

  18. Hilder, T.A., Yang, R., and Ganesh, V., Micro&Nano Lett, 2010, vol. 5, no. 2, p. 150.

    ADS  Google Scholar 

  19. Rappé, A.K. and Goddard, W.A., J. Phys. Chem., 1991, vol. 95, p. 3358.

    Article  Google Scholar 

  20. Nyden, M.R. and Stoliarov, S.I., Polymer, 2008, vol. 49, p. 635.

    Article  Google Scholar 

  21. Maiti, A., Wescott, J., and Kung, P., Mol. Simul., 2005, vol. 31, p. 143.

    Article  Google Scholar 

  22. Voronina, E.N. and Novikov, L.S., Trudy XX Mezhdunar. soveshch. Radiatsionnaya fizika tverdogo tela (Proc. XX Int. Meeting on Radiation Physics of Solid), Sevastopol, 2010, vol. 2, p. 601.

    Google Scholar 

  23. Hoogerbrugge, P.J. and Koelman, J.M., Europhys. Lett., 1992, vol. 19, p. 155.

    Article  ADS  Google Scholar 

  24. Flory, P.J., Principles of Polymer Chemistry, Ithaca, NY: Cornell Univ., 1953.

    Google Scholar 

  25. GEANT-Detector Description and Simulation Tool, Geneva: CERN, 1993.

  26. Krasheninnikov, A.V., Miyamoto, Y., and Tomanek, D., Phys. Rev. Lett., 2007, vol. 99, p. 016104.

    Article  ADS  Google Scholar 

  27. Nasrabadi, A.T. and Foroutan, M., J. Phys. Chem. B, 2010, vol. 114, p. 15429.

    Article  Google Scholar 

  28. Bergin, Sh.D., Sun, Zh., Rickard, D., et al., ACS NANO, 2009, vol. 3, no. 8, p. 2340.

    Article  Google Scholar 

  29. Harrison, C., Burgett, E., Hertel, N., et al., Nanostruct. Mater. Nanotech. II: Ceram. Eng. Sci. Proc., 2009, vol. 29, issue 8, p. 77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Voronina.

Additional information

Original Russian Text © E.N. Voronina, L.S. Novikov, N.P. Chirskaya, 2011, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2011, Vol. 75, No. 11, pp. 1594–1601.

About this article

Cite this article

Voronina, E.N., Novikov, L.S. & Chirskaya, N.P. Mathematical modeling of radioaction impact on advanced spacecraft materials. Bull. Russ. Acad. Sci. Phys. 75, 1500–1506 (2011). https://doi.org/10.3103/S106287381111027X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106287381111027X

Keywords

Navigation