Skip to main content
Log in

Methods for controlling the composition and morphology of electrodeposited Fe–Mo and Fe–Co–Mo coatings

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of the electrolyte composition and the stationary electrolysis parameters on the composition and morphology of Fe–Mo and Fe–Co–Mo coatings deposited from complex citrate electrolytes based on Fe(III) is studied. It is shown that, at a constant component ratio of с(Fe3+): с(Co2+): с(MoO2− 4): с(Cit3–) = 2: 2: 1: 4, an increase in the electrolyte concentration leads to a decrease in the pH of the solution in a range of 4.85–4.30 and in the molybdenum content in the coating. An increase in the current density contributes to the molybdenum enrichment of the electrodeposited alloy in the entire range of electrolyte concentrations. The Fe–Mo alloy coatings have a rough microporous surface; an increase in the current density does not lead to significant changes in the surface topography. It is found that the formation of ternary coatings is characterized by the competitive reduction of iron and cobalt in the alloy; the molybdenum content depends on the current density. At a metal ratio of 3: 2: 1 and a molybdenum content of up to 17 at % in the Fe–Co–Mo alloy, the surface has a fine-grained needlelike structure typical of cobalt. With an increase in i c, the atomic fraction of molybdenum increases, while the surface becomes microglobular. The Fe–Co–Mo electrodeposits with a metal ratio of 2.5: 1.5: 1.0 and a molybdenum content of 19–20 at % have a more developed surface with a high density of spheroids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsyntsaru, N., Cesiulis, H., Donten, M., Sort, J., et al., Surf. Eng. Appl. Electrochem., 2012, vol. 48, no. 6, pp. 491–520.

    Article  Google Scholar 

  2. Podlaha, E.J. and Landolt, D., J. Electrochem. Soc., 1997, vol. 144, no. 5, pp. 1672–1680.

    Article  Google Scholar 

  3. Salvatore, F. and Vasca, E., Ann. Chim., 1990, vol. 80, pp. 515–520.

    Google Scholar 

  4. Protsenko, V. and Danilov, F., Turk. J. Chem., 2015, vol. 39, pp. 610–619. doi 10.3906/kim-1409-61

    Article  Google Scholar 

  5. Kuznetsov, V.V., Golyanin, K.E., and Pshenichkina, T.V., Russ. J. Electrochem., 2012, vol. 48, no. 11, pp. 1107–1112.

    Article  Google Scholar 

  6. Belevskii, S.S., Yushchenko, S.P., and Dikusar, A.I., Surf. Eng. Appl. Electrochem., 2012, vol. 48, no. 1, pp. 97–98.

    Article  Google Scholar 

  7. Podlaha-Murphy, E.J., Silva, M., and Kola, A., NASF Surf. Technol. White Pap., 2014, vol. 78, no. 4, pp. 11–16.

    Google Scholar 

  8. Shul’man, A.I., Belevskii, S.S., Yushchenko, S.P., and Dikusar, A.I., Surf. Eng. Appl. Electrochem., 2014, vol. 50, no. 1, pp. 9–17.

    Article  Google Scholar 

  9. Tsyntsaru, N., Dikusar, A., Cesiulis, H., Celis, J.-P., et al., Powder Metall. Met. Ceram., 2009, vol. 48, nos. 7–8, pp. 419–428.

    Article  Google Scholar 

  10. Karakurkchi, A.V., Ved’, M.V., Sakhnenko, N.D., Yermolenko, I.Yu., et al., Funct. Mater., 2015, vol. 22, no. 2, pp. 181–187. http://dx.doi.org/ 10.15407/fm22.02.181.

    Article  Google Scholar 

  11. Spasojevic, M., Cirovic, N., Ribic-Zelenovic, L., Spasojevic, P., et al., J. Electrochem. Soc., 2014, vol. 161, no. 10, pp. D463–D469. doi 10.1149/2.0041410jes

    Article  Google Scholar 

  12. Karakurkchi, A.V., Ved’, M.V., Sakhnenko, N.D., Yermolenko, I.Yu., et al., Russ. J. Appl. Chem., 2015, vol. 88, no. 11, pp. 1860–1869.

    Article  Google Scholar 

  13. Karakurkchi, A.V., Ved’, M.V., Yermolenko, I.Yu., and Sakhnenko, N.D., Surf. Eng. Appl. Electrochem., 2016, vol. 52, no. 1, pp. 43–49. doi 10.3103/S1068375516010087

    Article  Google Scholar 

  14. Ved’, M.V., Sakhnenko, N.D., Karakurchi, A.V., and Zyubanova, S.I., Russ. J. Appl. Chem., 2014, vol. 87, no. 3, pp. 276–282. doi 10.1134/S1070427214030057

    Article  Google Scholar 

  15. Vukosav, P., Mlakar, M., and Tomisic, V., Anal. Chim. Acta, 2012, vol. 745, no. 1, pp. 85–91.

    Article  Google Scholar 

  16. Ved’, M., Glushkova, M., and Sakhnenko, N., Funct. Mater., 2013, vol. 20, no. 1, pp. 87–91. http://dx.doi.org/10.15407/fm20.01.087.

    Article  Google Scholar 

  17. Ved’, M.V., Sakhnenko, N.D., Karakurkchi, A.V., and Yermolenko, I.Yu., Vopr. Khim. Khim. Tekhnol., 2014, vol. 5, no. 6 (98), pp. 53–60.

    Google Scholar 

  18. Ermolenko, I.Yu., Tekhnol. Audit Rezervy Proizvod., 2014, no. 4-1 (18), pp. 44–48.

    Google Scholar 

  19. Danilov, F.I., Protsenko, V.S., and Ubiikon’, A.V., Russ. J. Electrochem., 2005, vol. 41, no. 12, pp. 1282–1289.

    Article  Google Scholar 

  20. Glushkova, M., Bairachna, T., Ved, M., and Sakhnenko, M., MRS Online Proc. Libr., 2013, vol. 1491. doi 10.1557/opl.2012.1672

  21. Kish, L., Kinetics of Electrochemical Metal Dissolution, Amsterdam: Elsevier, 1988.

    Google Scholar 

  22. Tsyntsaru, N.I., Belevskii, S.S., Volodina, G.F., Bersirova, O.L., Yapontseva, Yu.S., Kublanovskii, V.S., and Dikusar, A.I., Surf. Eng. Appl. Electrochem., 2007, vol. 43, no. 5, pp. 312–317.

    Article  Google Scholar 

  23. Yar-Mukhamedova, G., Ved’, M., Sakhnenko, N., Karakurkchi, A., et al., Appl. Surf. Sci., 2016, vol. 383, pp. 346–352. doi 10.1016/j.apsusc.2016.04.046

    Article  Google Scholar 

  24. Dragos, O., Chiriac, H., Lupu, N., Grigoras, M., et al., J. Electrochem. Soc., 2016, vol. 163, no. 3, pp. D83–D94.

    Article  Google Scholar 

  25. Gong, J., Riemer, S., Morrone, A., Venkatasamy, V., et al., J. Electrochem. Soc., 2012, vol. 159, no. 7, pp. D447–D454. doi 10.1149/2.082207jes

    Article  Google Scholar 

  26. Ghaferi, Z., Sharafi, S., and Bahrololoom, M.E., Appl. Surf. Sci., 2016, vol. 375, no. 1, pp. 35–41. doi 10.1016/j.apsusc.2016.03.063

    Article  Google Scholar 

  27. Yapontseva, Yu.S., Dikusar, A.I., and Kyblanovskii, V.S., Surf. Eng. Appl. Electrochem., 2014, vol. 50, no. 4, pp. 330–336.

    Article  Google Scholar 

  28. Ved’, M., Sakhnenko, N., Bairachnaya, T., and Tkachenko, N., Funct. Mater., 2008, vol. 15, no. 4, pp. 613–617.

    Google Scholar 

  29. He, F.-J., Lei, J.-T., Lu, X., and Huang, Y.-N., Trans. Nonferrous Met. Soc. China, 2004, vol. 14, no. 5, pp. 901–906.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Ved’.

Additional information

Original Russian Text © M.V. Ved’, I.Yu. Ermolenko, N.D. Sakhnenko, S.I. Zyubanova, Yu.I. Sachanova, 2017, published in Elektronnaya Obrabotka Materialov, 2017, No. 6, pp. 16–23.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ved’, M.V., Ermolenko, I.Y., Sakhnenko, N.D. et al. Methods for controlling the composition and morphology of electrodeposited Fe–Mo and Fe–Co–Mo coatings. Surf. Engin. Appl.Electrochem. 53, 525–532 (2017). https://doi.org/10.3103/S1068375517060138

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375517060138

Keywords

Navigation