Skip to main content
Log in

To Calculation of Regenerative Cooling of a Liquid Fuel Rocket Engine Chamber

  • Aircraft and Rocket Engine Theory
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

This paper demonstrates that in transition from the one-dimensional longitudinal-channel motion of the coolant in the regenerative cooling system of the liquid propellant engine to the twodimensional (interchannel) channel motion (transpiration) through a porous mesh material (PMM), the hydraulic losses decrease. Experimental data on PMM hydraulic resistance coefficients and heat transfer in porous paths with the interchannel coolant transpiration (ICCT) is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chvanov, V.K., Fatuev, I.Yu., Belikov, A.A. et al., Increasing the Energy Characteristics of the RD191 Engine by Installing a Shifted Nozzle Extension Skirt, Trudy NPO Energomash im. Akademika V.P. Glushko, 2011, no. 28, pp. 111–124.

    Google Scholar 

  2. Katkov, R.E., Lozino-Lozinskaya, I.G., Mosolov S.V. et al., Results of Fire Tests of Experimental Combustion Chambers of Liquid-Propellant Engines with Oxygen Cooling, Izv. RAN. Energetika, 2013, no.1, pp. 34–43.

    Google Scholar 

  3. Katkov, R.E., Lozino-Lozinskaya, I.G., Mosolov, S.V. et al., Experimental Development of a Multifunctional Liquid Rocket Engine with Oxygen-Cooled Combustion Chamber: Results of 2009–2014, Kosmicheskaya Tekhnika i Tekhnologii, 2015, no. 4, pp. 12–24.

    Google Scholar 

  4. Gorokhov, V.D., Katkov, R.E., Kozelkov, V.P. et al., Increase of Energy Characteristics and Reliability of Oxygen-Hydrocarbon Main LREs by Using New Cooling and Fuel Components Feeding Schemes, Raketnaya i Kosmicheskaya Tekhnika. Trudy RKK “Energiya”, 2000, issue 12, pp. 133–151.

    Google Scholar 

  5. Chvanov, V.K., Arkhangel’skii, V.I., Klepikov, I.A. et al., Possibilities of Improving the LRE Performance in Using Helium as a Fuel Additive, Vestnik MGTU im. N.E. Baumana, 2004, Seriya Mashinostroenie (Special issue), pp. 84–89.

    Google Scholar 

  6. Ivanov, N.G., Kandoba, L.N., Kashapov, M.A. et al., Selection of the Cooling Scheme for the Chamber of Reusable LRE on Oxygen-Methane Fuel for an Advanced Launch Vehicle, Trudy NPO Energomash im. Akademika V.P. Glushko, 2012, no. 29, pp. 70–85.

    Google Scholar 

  7. Miroshkin, V.V., Oxygen-Methane LRE with an Additional Turbine, Trudy NPO Energomash im. Akademika V.P. Glushko, 2005, no. 23, pp. 256–270.

    Google Scholar 

  8. Zarubin, V.S., Temperaturnye polya v konstruktsii letatel’nykh apparatov (Temperature Fields in the Design of Aircraft), Moscow: Mashinostroenie, 1966.

    Google Scholar 

  9. Vasiliev, A.P., Kudryavtsev, V.M., Kuznetsov, V.A. et al., Osnovy teorii i rascheta zhidkostnykh raketnykh dvigatelei (Foundations of the Theory and Calculation of Liquid-Propellant Rocket Engines), Kudryavtsev, V.M., Ed., Moscow: Vysshaya Shkola, 1993, vol.2.

  10. Pelevin, F.V., Ilinskaya, O.I., and Orlin, S.A., Application of Coplanar Channels in Engineering, Vestnik PNIPU. Aerokosmicheskaya tekhnika, 2014, no. 37, pp. 71–85.

    Google Scholar 

  11. Klyueva, O.G., Perfection of Heat Exchangers for Launch Vehicle Tanks Pressurization of, part 2, Cylindrical Heat Exchanger of RD171 Engine, Trudy NPO Energomash im. Akademika V.P. Glushko, 2006, no. 24, pp. 256–271.

    Google Scholar 

  12. Vikulin, A.V., Yaroslavtsev, N.L., and Chesnova, V.A., Diagnostics of Efficiency for a Cooling System of Compact Heat Exchangers with Coplanar Channels, Izv. Vuz. Av. Tekhnika, 2016, no. 3, pp. 94–99 [Russian Aeronautics (Engl. Transl.), 2016, vol. 59, no. 3, pp. 395–401].

    Google Scholar 

  13. Trushin, V.A., and Chechulin, A.Yu., A Technique of Design Analysis for the Gas Turbine Engine Regenerator with Complanar Channels According to the Heat Flow and Hydraulic Resistances, Izv. Vuz. Av. Tekhnika, 2014, no.1, pp. 68–72 [Russian Aeronautics (Engl. Transl.), 2014, vol. 57, no. 1, pp. 92–99].

    Google Scholar 

  14. Polyaev, V.M., Mayorov, V.A., and Vasiliev, L.L., Gidrodinamika i teploobmen v poristykh elementakh konstruktsii letatel’nykh apparatov (Hydrodynamics and Heat Transfer in Porous Elements of Aircraft Structures), Moscow: Mashinostroenie, 1988.

    Google Scholar 

  15. Polyaev, V.M., Morozova, L.L., Kharybin, E.V., et al., Intensification of Heat Transfer in the Annular Channel, Izv. Vuz. Mashinostroenie, 1976, no. 2, pp. 86–89.

    Google Scholar 

  16. Pelevin, F.V., Hydraulic Resistance of Porous Metals, Izv. Vuz. Mashinostroenie, 2016, no. 2, pp. 42–52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. V. Pelevin.

Additional information

Original Russian Text © F.V. Pelevin, A.V. Ponomarev, 2018, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2018, No. 1, pp. 71–77.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelevin, F.V., Ponomarev, A.V. To Calculation of Regenerative Cooling of a Liquid Fuel Rocket Engine Chamber. Russ. Aeronaut. 61, 71–77 (2018). https://doi.org/10.3103/S1068799818010117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799818010117

Keywords

Navigation