Skip to main content
Log in

Study of the Effect of Pulsed-Periodic Electric Field and Linearly Polarized Laser Radiation on the Properties of Liquid-Crystal Waveguide

  • Nonlinear Optics of Liquid Crystals
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

Integrated-optical waveguides with a nematic liquid-crystal 4-cyano-4’-pentylbiphenyl (5CB) waveguiding layer have been investigated for different polarizations of incident laser radiation and under a pulsed-periodic electric field. A dependence of the damping coefficient of waveguide modes and the sizes of quasi-steady-state irregularities of nematic liquid-crystal layer on the linear polarization of laser radiation and the strength of pulsed-periodic field has been found experimentally. The correlation length is estimated for waveguiding layer irregularities. The waveguide scattering method has provided a resolution in correlation length exceeding the classical resolution limit by approximately an order of magnitude. The observed decrease in the damping coefficient of waveguide modes and irregularity sizes under external field is explained by the decrease in the correlation length of director fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Blinov, Electro-Optical and Magneto-Optical Properties of Liquid Crystals (Wiley, N. Y., 1983).

    Google Scholar 

  2. I. C. Khoo, Liquid Crystals, 2nd ed. (Wiley, N. Y., 2007).

    Book  Google Scholar 

  3. Nonlinear Optical Properties of Organic Molecules and Crystals, Ed. by D. S. Chemla and J. Zyss (Academic Press, N. Y., 1987).

    Google Scholar 

  4. A. Bogi and S. Faetti, “Elastic, Dielectric and Optical Constants of 4’-Pentyl-4-Cyanobiphenyl,” Liquid Crystals. 28(5), 729 (2001).

    Article  Google Scholar 

  5. P. D. Berezin, I. N. Kompanets, V. V. Nikitin, and S. A. Pikin, “Orienting Effect of an Electric Field on Nematic Liquid Crystals,” Sov. Phys.-JETP. 37(2), 305 (1973).

    ADS  Google Scholar 

  6. S. I. Torgova, V. D. Shigorin, I. A. Maslyanitsyn, L. Todorova, Y. G. Marinov, G. B. Hadjichristov and A. G. Petrov, “Electric Field-Induced Optical Second Harmonic Generation in Nematic Liquid Crystal 5CB,” J. Phys.: Conf. Ser. 558, 012025 (2014) [DOI: 10. 1088/1742-6596/558/1/0120].

    Google Scholar 

  7. A. A. Ayriyan, E. A. Ayrjan, A. A. Egorov, G. B. Hadjichristov, Y. G. Marinov, I. A. Maslyanitsyn, A. G. Petrov, J. Pribis, L. Popova, V. D. Shigorin, A. Strigazzi, and S. I. Torgova, “Some Features of Second Harmonic Generation in the Nematic Liquid Crystal 5CB in the Pulsed-Periodic Electric Field,” Phys. Wave Phenom. 24(4), 259 (2016) [DOI: 10. 3103/S1541308X16040026].

    Article  ADS  Google Scholar 

  8. K. Sun, Z. Xiao, S. Lu, W. Zajaczkowski, W. Pisula, E. Hanssen, J. M. White, R. M. Williamson, J. Subbiah, J. Ouyang, A. B. Holmes, W. W. H. Wong, and D. J. Jones, “A Molecular Nematic Liquid Crystalline Material for High-Performance Organic Photovoltaics,” Nature Commun. 6, 6013 (2014) [DOI: 10. 1038/ncomms7013].

    Article  Google Scholar 

  9. G. Gilardi, R. Asquini, A. d’Alessandro, and G. Assanto, “Widely Tunable Electro-Optic Distributed Bragg Reflector in Liquid Crystal Waveguide,” Opt. Exp. 18(11), 11524 (2010).

    Article  ADS  Google Scholar 

  10. A. Fratalocchi, G. Assanto, K. A. Brzda¸ kiewicz, and M. A. Karpierz, “Discrete Light Propagation and Self-Trapping in Liquid Crystals,” Opt. Exp. 13(6), 1808, (2005).

    Article  ADS  Google Scholar 

  11. Integrated Optics, Ed. by T. Tamir (Springer-Verlag, N. Y., 1975).

    Google Scholar 

  12. R. G. Hunsperger, Integrated Optics. Theory and Technology (Springer-Verlag, N. Y., 1984).

    Book  Google Scholar 

  13. D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, N. Y., 1972).

    Google Scholar 

  14. A. V. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, N. Y., 1983).

    Google Scholar 

  15. A. A. Egorov, I. A. Maslyanitsyn, V. D. Shigorin, A. S. Ayriyan, and E. A. Ayrjan, “Study of the Effect of Pulsed-Periodic Electric Field and Linear Polarization of Laser Radiation on the NLC Waveguide Properties,” in Proceedings of the 5th International Conference “Problems of Mathematical and Theoretical Physics and Mathematical Simulation” (April 5−7, 2016, Moscow, National Research Nuclear University MEPhI) (Izd-vo MEPhI, Moscow, 2016), p. 51 [in Russian].

    Google Scholar 

  16. A. A. Yegorov, “Use of Waveguide Light Scattering for Precision Measurements of the Statistic Parameters of Irregularities of Integrated OpticalWaveguide Materials,” Opt. Eng. 44(1), 014601 (2005) [DOI: 10. 1117/1. 1828469].

    Article  ADS  Google Scholar 

  17. A. A. Egorov, “Theoretical and Numerical Analysis of Propagation and Scattering of Eigen-and Non-Eigen Modes of an Irregular Integrated-Optical Waveguide,” Quantum Electron. 42(4), 337 (2012).

    Article  ADS  Google Scholar 

  18. A. A. Egorov, “Numerical Investigation of Characteristics of Laser Radiation Scattered in an Integrated OpticalWaveguide with Three-Dimensional Inhomogeneities,” Opt. Spectrosc. 112(2), 280 (2012) [DOI: 10. 1134/S0030400X12020105].

    Article  ADS  Google Scholar 

  19. A. A. Egorov, “Reconstruction of the Experimental Autocorrelation Function and Determination of the Parameters of the Statistical Roughness of a Surface from Laser Radiation Scattering in an Integrated-Optical Waveguide,” Quantum Electron. 33(4), 335 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Egorov.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorov, A.A., Shigorin, V.D., Ayriyan, A.S. et al. Study of the Effect of Pulsed-Periodic Electric Field and Linearly Polarized Laser Radiation on the Properties of Liquid-Crystal Waveguide. Phys. Wave Phen. 26, 116–123 (2018). https://doi.org/10.3103/S1541308X18020061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X18020061

Navigation