Skip to main content
Log in

Cognitive vulnerability and implicit emotional processing: imbalance in frontolimbic brain areas?

  • Published:
Cognitive, Affective, & Behavioral Neuroscience Aims and scope Submit manuscript

Abstract

It has been proposed that the neural basis for cognitive vulnerability to depression involves an imbalance in frontolimbic activity during the processing of cues with a negative affective value. Although the question is central to cognitive theory, whether this association is amplified by diagnosis of an affective disorder or recent life stress has not been investigated. A composite cognitive vulnerability score based on questionnaire assessment was used to predict neural responses to negative emotional stimuli in N = 112 participants. Potential moderating effects of psychiatric diagnosis and negative life events were examined. Main and interaction effects were tested against a threshold of p < .05, family-wise error (FWE) corrected at the cluster level, and the results were small-volume corrected in regions of interest. Cognitive vulnerability predicted higher activation of superior parietal areas (p FWE < .01) for negative than for positive faces. The association was significantly stronger in healthy participants. For negative versus control stimuli, cognitive vulnerability predicted higher ventrolateral prefrontal and subgenual anterior cingulate activation (p FWE < .05) to equal extents in both groups. We found no evidence for an association with amygdala activation. Life events did not moderate the findings. We concluded that cognitive vulnerability was associated with higher activation of frontoparietal areas during an implicit emotional task. These higher levels of activation may potentially reflect increased effort being required to ignore irrelevant negative emotional information in vulnerable populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alloy, L., Abramson, L., Whitehouse, W., Hogan, M., Tashman, N., Steinberg, D., & Donovan, P. (1999). Depressogenic cognitive styles: Predictive validity, information processing and personality characteristics, and developmental origins. Behaviour Research and Therapy, 37, 503–531. doi:10.1016/S0005-7967(98)00157-0

    Article  PubMed  Google Scholar 

  • American Psychiatric Association. (2004). Diagnostic and statistical manual of mental disorders (DSM-IV) (4th ed., Text rev.). Washington, DC: Author.

  • Banich, M. T., Mackiewicz, K. L., Depue, B. E., Whitmer, A. J., Miller, G. A., & Heller, W. (2009). Cognitive control mechanisms, emotion and memory: A neural perspective with implications for psychopathology. Neuroscience & Biobehavioral Reviews, 33, 613–630. doi:10.1016/j.neubiorev.2008.09.010

    Article  Google Scholar 

  • Barch, D. M. (2014). Risk for mood pathology: Neural and psychological markers of abnormal negative information processing. Journal of the American Academy of Child and Adolescent Psychiatry, 53, 497–499. doi:10.1016/j.jaac.2014.01.012

    Article  PubMed  Google Scholar 

  • Beck, A. (1963). Thinking and depression: 1. Idiosyncratic content and cognitive distortions. Archives of General Psychiatry, 9, 324–333.

    Article  PubMed  Google Scholar 

  • Beck, A. T. (2008). The evolution of the cognitive model of depression and its neurobiological correlates. American Journal of Psychiatry, 165, 969–977. doi:10.1176/appi.ajp.2008.08050721

    Article  PubMed  Google Scholar 

  • Beevers, C. G., Clasen, P., Stice, E., & Schnyer, D. (2010). Depression symptoms and cognitive control of emotion cues: A functional magnetic resonance imaging study. Neuroscience, 167, 97–103. doi:10.1016/j.neuroscience.2010.01.047

    Article  PubMed Central  PubMed  Google Scholar 

  • Browning, M., Holmes, E. A., & Harmer, C. J. (2010). The modification of attentional bias to emotional information: A review of the techniques, mechanisms, and relevance to emotional disorders. Cognitive, Affective, & Behavioral Neuroscience, 10, 8–20. doi:10.3758/CABN.10.1.8

    Article  Google Scholar 

  • Brugha, T., Bebbington, P., Tennant, C., & Hurry, J. (1985). The List of Threatening Experiences—A subset of 12 life event categories with considerable long-term contextual threat. Psychological Medicine, 15, 189–194.

    Article  PubMed  Google Scholar 

  • Costafreda, S. G., Brammer, M. J., David, A. S., & Fu, C. H. Y. (2008). Predictors of amygdala activation during the processing of emotional stimuli: A meta-analysis of 385 PET and fMRI studies. Brain Research Reviews, 58, 57–70. doi:10.1016/j.brainresrev.2007.10.012

    Article  PubMed  Google Scholar 

  • Cremers, H. R., Demenescu, L. R., Aleman, A., Renken, R., van Tol, M. J., van der Wee, N. J., & Roelofs, K. (2010). Neuroticism modulates amygdala-prefrontal connectivity in response to negative emotional facial expressions. NeuroImage, 49, 963–970. doi:10.1016/j.neuroimage.2009.08.023

    Article  PubMed  Google Scholar 

  • Cromheeke, S., & Mueller, S. C. (2014). Probing emotional influences on cognitive control: An ALE meta-analysis of cognition emotion interactions. Brain Structure and Function, 219, 995–1008. doi:10.1007/s00429-013-0549-z

    Article  PubMed  Google Scholar 

  • De Raedt, R., & Koster, E. H. W. (2010). Understanding vulnerability for depression from a cognitive neuroscience perspective: A reappraisal of attentional factors and a new conceptual framework. Cognitive, Affective, & Behavioral Neuroscience, 10, 50–70. doi:10.3758/CABN.10.1.50

    Article  Google Scholar 

  • Demenescu, L. R., Renken, R., Kortekaas, R., van Tol, M. J., Marsman, J. B. C., van Buchem, M. A., & Aleman, A. (2011). Neural correlates of perception of emotional facial expressions in out-patients with mild-to-moderate depression and anxiety: A multicenter fMRI study. Psychological Medicine, 41, 2253–2264. doi:10.1017/S0033291711000596

    Article  PubMed  Google Scholar 

  • Disner, S. G., Beevers, C. G., Haigh, E. A. P., & Beck, A. T. (2011). Neural mechanisms of the cognitive model of depression. Nature Reviews Neuroscience, 12, 467–477. doi:10.1038/nrn3027

    Article  PubMed  Google Scholar 

  • Drevets, W. C., & Savitz, J. (2008). The subgenual anterior cingulate cortex in mood disorders. CNS Spectrums, 13, 663–681.

    PubMed Central  PubMed  Google Scholar 

  • Glashouwer, K. A., & de Jong, P. J. (2010). Disorder-specific automatic self-associations in depression and anxiety: Results of the Netherlands study of depression and anxiety. Psychological Medicine, 40, 1101–1111. doi:10.1017/S0033291709991371

    Article  PubMed  Google Scholar 

  • Greenberg, A. S., Esterman, M., Wilson, D., Serences, J. T., & Yantis, S. (2010). Control of spatial and feature-based attention in frontoparietal cortex. Journal of Neuroscience, 30, 14330–14339. doi:10.1523/JNEUROSCI.4248-09.2010

    Article  PubMed Central  PubMed  Google Scholar 

  • Groenewold, N. A., Opmeer, E. M., de Jonge, P., Aleman, A., & Costafreda, S. G. (2013). Emotional valence modulates brain functional abnormalities in depression: Evidence from a meta-analysis of fMRI studies. Neuroscience & Biobehavioral Reviews, 37, 152–163. doi:10.1016/j.neubiorev.2012.11.015

    Article  Google Scholar 

  • Hamani, C., Mayberg, H., Stone, S., Laxton, A., Haber, S., & Lozano, A. M. (2011). The subcallosal cingulate gyrus in the context of major depression. Biological Psychiatry, 69, 301–308. doi:10.1016/j.biopsych.2010.09.034

    Article  PubMed  Google Scholar 

  • Hammen, C. (2005). Stress and depression. Annual Review of Clinical Psychology, 1, 293–319. doi:10.1146/annurev.clinpsy.1.102803.143938

    Article  PubMed  Google Scholar 

  • Harmer, C. J., Goodwin, G. M., & Cowen, P. J. (2009). Why do antidepressants take so long to work? A cognitive neuropsychological model of antidepressant drug action. British Journal of Psychiatry, 195, 102–108. doi:10.1192/bjp.bp.108.051193

    Article  PubMed  Google Scholar 

  • Kerestes, R., Ladouceur, C. D., Meda, S., Nathan, P. J., Blumberg, H. P., Maloney, K., & Phillips, M. L. (2012). Abnormal prefrontal activity subserving attentional control of emotion in remitted depressed patients during a working memory task with emotional distracters. Psychological Medicine, 42, 29–40. doi:10.1017/S0033291711001097

    Article  PubMed  Google Scholar 

  • Kessler, R. C., & Ustun, T. B. (2004). The world mental health (WMH) survey initiative version of the world health organization (WHO) composite international diagnostic interview (CIDI). International Journal of Methods in Psychiatric Research, 13, 93–121.

    Article  PubMed  Google Scholar 

  • Kircanski, K., Joormann, J., & Gotlib, I. H. (2012). Cognitive aspects of depression. Wiley Interdisciplinary Reviews: Cognitive Science, 3, 301–313. doi:10.1002/wcs.1177

    PubMed Central  PubMed  Google Scholar 

  • Kriegeskorte, N., Lindquist, M. A., Nichols, T. E., Poldrack, R. A., & Vul, E. (2010). Everything you never wanted to know about circular analysis, but were afraid to ask. Journal of Cerebral Blood Flow & Metabolism, 30, 1551–1557. doi:10.1038/jcbfm.2010.86

    Article  Google Scholar 

  • Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S. F., & Baker, C. I. (2009). Circular analysis in systems neuroscience: the dangers of double dipping. Nature Neuroscience, 12(5), 535-540. doi:10.1038/nn.2303

  • Lau, M., Segal, Z., & Williams, J. (2004). Teasdale’s differential activation hypothesis: Implications for mechanisms of depressive relapse and suicidal behaviour. Behaviour Research and Therapy, 42, 1001–1017. doi:10.1016/j.brat.2004.03.003

    Article  PubMed  Google Scholar 

  • Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., & Barrett, L. F. (2012). The brain basis of emotion: A meta-analytic review. Behavioral and Brain Sciences, 35, 121–143. doi:10.1017/S0140525X11000446

    Article  PubMed  Google Scholar 

  • Lisiecka, D. M., Carballedo, A., Fagan, A. J., Ferguson, Y., Meaney, J., & Frodl, T. (2013). Recruitment of the left hemispheric emotional attention neural network in risk for and protection from depression. Journal of Psychiatry and Neuroscience, 38, 117–128. doi:10.1503/jpn.110188

    Article  PubMed Central  PubMed  Google Scholar 

  • Lundqvist, D., Flykt, A., & Ohmann, A. (1998). The Karolinska Directed Emotional Faces (KDEF) [Database]. Stockholm, Sweden: Karolinska Institute.

    Google Scholar 

  • Mannie, Z. N., Taylor, M. J., Harmer, C. J., Cowen, P. J., & Norbury, R. (2011). Frontolimbic responses to emotional faces in young people at familial risk of depression. Journal of Affective Disorders, 130, 127–132. doi:10.1016/j.jad.2010.09.030

    Article  PubMed  Google Scholar 

  • Matthews, S., Simmons, A., Strigo, I., Gianaros, P., Yang, T., & Paulus, M. (2009). Inhibition-related activity in subgenual cingulate is associated with symptom severity in major depression. Psychiatry Research: Neuroimaging, 172, 1–6. doi:10.1016/j.pscychresns.2008.08.006

    Article  PubMed  Google Scholar 

  • Monroe, S., & Simons, A. (1991). Diathesis stress theories in the context of life stress research—Implications for the depressive-disorders. Psychological Bulletin, 110, 406–425. doi:10.1037/0033-2909.110.3.406

    Article  PubMed  Google Scholar 

  • Norbury, R., Selvaraj, S., Taylor, M. J., Harmer, C., & Cowen, P. J. (2010). Increased neural response to fear in patients recovered from depression: A 3T functional magnetic resonance imaging study. Psychological Medicine, 40, 425–432. doi:10.1017/S0033291709990596

    Article  PubMed  Google Scholar 

  • Pearlin, L., & Schooler, C. (1978). Structure of coping. Journal of Health and Social Behavior, 19, 2–21. doi:10.2307/2136319

    Article  PubMed  Google Scholar 

  • Penninx, B. W., Beekman, A. T., Smit, J. H., Zitman, F. G., Nolen, W. A., Spinhoven, P., . . . NESDA Research Consortium. (2008). The Netherlands Study of Depression and Anxiety (NESDA): Rationale, objectives and methods. International Journal of Methods in Psychiatric Research, 17, 121–140. doi:10.1002/mpr.256

  • Phillips, M. L., Ladouceur, C. D., & Drevets, W. C. (2008). A neural model of voluntary and automatic emotion regulation: Implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Molecular Psychiatry, 13, 833–857. doi:10.1038/mp.2008.65

    Article  Google Scholar 

  • Ray, R. D., Ochsner, K. N., Cooper, J. C., Robertson, E. R., Gabrieli, J. D. E., & Gross, J. J. (2005). Individual differences in trait rumination and the neural systems supporting cognitive reappraisal. Cognitive, Affective, & Behavioral Neuroscience, 5, 156–168. doi:10.3758/CABN.5.2.156

    Article  Google Scholar 

  • Rive, M. M., van Rooijen, G., Veltman, D. J., Phillips, M. L., Schene, A. H., & Ruhe, H. G. (2013). Neural correlates of dysfunctional emotion regulation in major depressive disorder: A systematic review of neuroimaging studies. Neuroscience & Biobehavioral Reviews, 37, 2529–2553. doi:10.1016/j.neubiorev.2013.07.018

    Article  Google Scholar 

  • Roiser, J. P., Elliott, R., & Sahakian, B. J. (2012). Cognitive mechanisms of treatment in depression. Neuropsychopharmacology, 37, 117–136. doi:10.1038/npp.2011.183

    Article  PubMed Central  PubMed  Google Scholar 

  • Rush, A. J., Gullion, C. M., Basco, M. R., Jarrett, R. B., & Trivedi, M. H. (1996). The Inventory of Depressive Symptomatology (IDS): Psychometric properties. Psychological Medicine, 26, 477–486.

    Article  PubMed  Google Scholar 

  • Scher, C., Ingram, R., & Segal, Z. (2005). Cognitive reactivity and vulnerability: Empirical evaluation of construct activation and cognitive diatheses in unipolar depression. Clinical Psychology Review, 25, 487–510. doi:10.1016/j.cpr.2005.01.005

    Article  PubMed  Google Scholar 

  • Schulz, K. P., Clerkin, S. M., Halperin, J. M., Newcorn, J. H., Tang, C. Y., & Fan, J. (2009). Dissociable neural effects of stimulus valence and preceding context during the inhibition of responses to emotional faces. Human Brain Mapping, 30, 2821–2833. doi:10.1002/hbm.20706

    Article  PubMed Central  PubMed  Google Scholar 

  • Struijs, S. Y., Groenewold, N. A., Oude Voshaar, R. C., & de Jonge, P. (2013). Cognitive vulnerability differentially predicts symptom dimensions of depression. Journal of Affective Disorders, 151, 92–99. doi:10.1016/j.jad.2013.05.057

    Article  PubMed  Google Scholar 

  • Stuhrmann, A., Suslow, T., & Dannlowski, U. (2011). Facial emotion processing in major depression: A systematic review of neuroimaging findings. Biology of Mood & Anxiety Disorders, 1, 10. doi:10.1186/2045-5380-1-10

    Article  Google Scholar 

  • Thomas, E. J., Elliott, R., McKie, S., Arnone, D., Downey, D., Juhasz, G., & Anderson, I. M. (2011). Interaction between a history of depression and rumination on neural response to emotional faces. Psychological Medicine, 41, 1845–1855. doi:10.1017/S0033291711000043

    Article  PubMed  Google Scholar 

  • Van der Does, W. (2002). Cognitive reactivity to sad mood: Structure and validity of a new measure. Behaviour Research and Therapy, 40, 105–120. doi:10.1016/S0005-7967(00)00111-X

    Article  PubMed  Google Scholar 

  • Van der Does, A. J. W., & Williams, J. M. G. (2003). Leiden Index of Depression Sensitivity–Revised (LEIDS-R) [Database]. Leiden, The Netherlands: Leiden University.

    Google Scholar 

  • Vanderhasselt, M., Kuehn, S., & De Raedt, R. (2011). Healthy brooders employ more attentional resources when disengaging from the negative: An event-related fMRI study. Cognitive, Affective, & Behavioral Neuroscience, 11, 207–216. doi:10.3758/s13415-011-0022-5

    Article  Google Scholar 

  • Wolfensberger, S. P. A., Veltman, D. J., Hoogendijk, W. J. G., Boomsma, D. I., & de Geus, E. J. C. (2008). Amygdala responses to emotional faces in twins discordant or concordant for the risk for anxiety and depression. NeuroImage, 41, 544–552. doi:10.1016/j.neuroimage.2008.01.053

    Article  PubMed  Google Scholar 

  • Zhong, M., Wang, X., Xiao, J., Yi, J., Zhu, X., Liao, J., & Yao, S. (2011). Amygdala hyperactivation and prefrontal hypoactivation in subjects with cognitive vulnerability to depression. Biological Psychology, 88, 233–242. doi:10.1016/j.biopsycho.2011.08.007

    Article  PubMed  Google Scholar 

Download references

Author note

We are very grateful for the contributions of all the participants and the staffs of the participating institutions. The infrastructure for the NESDA study (available at www.nesda.nl) is funded, in part, by the Geestkracht program of the Netherlands Organization for Health Research and Development (ZonMw, Grant 10-000-1002) and is supported, in part, by the participating universities and mental health care organizations: VU University Medical Center, GGZ inGeest, Arkin, Leiden University Medical Center, GGZ Rivierduinen, University Medical Center Groningen, Lentis, GGZ Friesland, GGZ Drenthe, the Scientific Institute for Quality of Health Care (IQ Healthcare), the Netherlands Institute for Health Services Research (NIVEL), and the Netherlands Institute of Mental Health and Addiction (Trimbos). N.A.G. was partly supported by a personal grant from the Gratama Stichting. The authors do not have any potential conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nynke A. Groenewold.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement 1

(DOC 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Groenewold, N.A., Roest, A.M., Renken, R.J. et al. Cognitive vulnerability and implicit emotional processing: imbalance in frontolimbic brain areas?. Cogn Affect Behav Neurosci 15, 69–79 (2015). https://doi.org/10.3758/s13415-014-0316-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13415-014-0316-5

Keywords

Navigation