Skip to main content
Log in

Non-Positive Corrections and Variance Models for Iterative Post-Log Reconstruction of Extremely Low-Dose CT Data

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In extremely low-dose protocols to reduce radiation dose to patients, computed tomography (CT) images suffer from increased bias and low signal-to-noise ratio in measurements. In this study, we consider three different non-positive corrections, flip, truncation and mean-preserving filter (MPF), affecting the measurement mean, propose a new variance expression for weights in weighted least-squares (WLS) reconstruction, and evaluate the impact on changes in the mean and variance of measurements. We simulated 1000 polychromatic CT sinograms of a chest phantom, including realistic levels of quantum and electronic noises. For the simulated scenario of 80 kVp and 0.5 mAs, compared to the conventional threshold and flip methods, the mean-preserving filter reduced the bias in post-log sinogram values by up to five times. Simple weights in WLS reconstruction that neglected the effect of non-positive correction limited improvements in the image quality. The advanced variance estimates considering electronic noise and the effect of pre-processing on the variance change made both WLS and penalized WLS reconstructions improve. Although the image quality improvement from a WLS reconstruction based on a Gaussian post-log distribution is inherently limited, the proposed method for estimating the post-log variance including electronic noise and the effect of pre-corrections from a single measurement leads to some improvements in variance estimates for post-log CT data and showed the feasibility of post-log iterative reconstruction for extremely low-dose CT imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Buls, J. Pagés, J. de Mey and M. Osteaux, Health Phys. 85, 165 (2003).

    Article  Google Scholar 

  2. J. R. Mayo, J. Aldrich, N. L. Muller and S. Fleischner, Radiology 228, 15 (2003).

    Article  Google Scholar 

  3. E. J. Hall and D. J. Brenner, Br. J. Radiol. 81, 362 (2008).

    Article  Google Scholar 

  4. W. W. Mayo-Smith et al., Radiology 273, 657 (2014).

    Article  Google Scholar 

  5. L. Zhou, S. Bai, Y. Zhang and J. Deng, Med. Phys. 42, 3265 (2015).

    Article  Google Scholar 

  6. M. M. Rehani, Radiat. Prot. Dosim. 165, 3 (2015).

    Article  Google Scholar 

  7. H. Imhof et al., Eur. J. Radiol. 47, 29 (2003).

    Article  Google Scholar 

  8. J. F. Paul and H. T. Abada, Eur. Radiol. 17, 2028 (2007).

    Article  Google Scholar 

  9. M. Mahesh, Pediatr. Radiol. 41, 493 (2011).

    Article  Google Scholar 

  10. A. K. Hara et al., AJR Am. J. Roentgenol. 201, 33 (2013).

    Article  Google Scholar 

  11. S. Trattner et al., J. Am. Coll. Radiol. 11, 271 (2014).

    Article  Google Scholar 

  12. J. Lambert, J. D. MacKenzie, D. D. Cody and R. Gould, J. Am. Coll. Radiol. 11, 262 (2014).

    Article  Google Scholar 

  13. T. Xia et al., Phys. Med. Biol. 57, 309 (2012).

    Article  Google Scholar 

  14. J. Hsieh, Med. Phys. 2, 139 (1998).

    Google Scholar 

  15. J. Wang, T. Li, H. Lu and Z. Liang, IEEE Trans. Med. Imaging 25, 1272 (2006).

    Article  Google Scholar 

  16. J. Wang, H. Lu, J. Wen and Z. Liang, IEEE Trans. Biomed. Eng. 55, 1022 (2008).

    Article  Google Scholar 

  17. A. Manduca et al., Med. Phys. 36, 4911 (2009).

    Article  Google Scholar 

  18. H. Zhang et al., Med. Phys. 41, 031906 (2014).

    Article  Google Scholar 

  19. M. Bai et al., Med. Phys. 36, 95 (2009).

    Article  Google Scholar 

  20. Z. Li et al., Med. Phys. 41, 011908 (2014).

    Article  Google Scholar 

  21. I. A. Elbakri and J. A. Fessler, IEEE Trans. Med. Imaging 21, 89 (2002).

    Article  Google Scholar 

  22. J. B. Thibault, K. D. Sauer, C. A. Bouman and J. Hsieh, Med. Phys. 45, 4526 (2007).

    Article  Google Scholar 

  23. B. Kataria and O. Smedby, Acta Radiol. 54, 540 (2013).

    Article  Google Scholar 

  24. N. Buls, et al., Eur. Radiol. 25, 1023 (2014).

    Article  Google Scholar 

  25. T. Klink et al., Eur. J. Radiol. 83, 1654 (2014).

    Article  Google Scholar 

  26. E. Hérin et al., Eur. Radiol. 25, 2362 (2015).

    Article  Google Scholar 

  27. J. Nuyts et al., Phys. Med. Biol. 58, R63 (2013).

    Article  Google Scholar 

  28. L. Fu et al., IEEE Trans. Med. Imaging 36, 707 (2017).

    Article  Google Scholar 

  29. B. R. Whiting, Proc. SPIE Med. Imaging 4682, 53 (2002).

    Article  ADS  Google Scholar 

  30. B. R. Whiting et al., Med. Phys. 33, 3290 (2006).

    Article  Google Scholar 

  31. S. Zabić, Q. Wang, T. Morton and K. M. Brown, Med. Phys. 40, 031102 (2013).

    Article  Google Scholar 

  32. K. Sauer and C. Bouman, IEEE Trans. Signal Process. 41, 534 (1993).

    Article  ADS  Google Scholar 

  33. J. B. Thibault, C. A. Bouman, K. D. Sauer and J. Hsieh, Proc. SPIE Comput. Imaging IV 6065, 60650X (2006).

    Article  Google Scholar 

  34. B. De Man et al., Proc. SPIE Med. Imaging: Phys. Med. Imaging 6510, 65102G (2007).

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the helpful discussions of Adam Alessio, Jean-Baptiste Thibault and Ruoqiao Zhang and the CatSim from Bruno De man. This work is supported by the National Institutes of Health [grant numbers R01-CA115870, R01-HL109327], and by the National Research Foundation of Korea [grant number NRF-2018R1D1A1B07049296].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo Mee Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.M., Lee, TC. & Kinahan, P.E. Non-Positive Corrections and Variance Models for Iterative Post-Log Reconstruction of Extremely Low-Dose CT Data. J. Korean Phys. Soc. 77, 177–185 (2020). https://doi.org/10.3938/jkps.77.177

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.77.177

Keywords

Navigation