Skip to main content
Log in

Effect of the Energy Level and the Carrier Mobility of the Hole Extraction Layer on the Performance of Planar-mixed Heterojunction Organic Solar Cells

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We systematically explored the effect of the electrical property of a homogenously deposited donor layer (HDonor) on the efficiency of planar-mixed heterojunction organic solar cells. The equivalent circuit model analysis and the dark current characteristics indicate that an increased energy barrier for the electron between the mixed layer and the HDonorELUMO) decreases the leakage path, thereby resulting in an improved fill factor of the cell. Moreover, the incorporation of HDonor with high hole mobility (μh) to device leads to enhanced charge collecting efficiency and decreased recombination losses. As a result, the device containing HDonor with high μh and ΔELUMO showed 28% improvement in power conversion efficiency (5.54%) compared to that of a device with the conventional structure. We believe that this strategy will be a guideline to unlock the full potential of materials in organic solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. C. Krebs et al., Adv. Mater. 26, 2939 (2014).

    Article  Google Scholar 

  2. V. Coropceanu et al., Nat. Rev. Mater. 4, 689 (2019).

    Article  ADS  Google Scholar 

  3. Y. Li et al., Adv. Mater. 31, 1903173 (2019).

    Article  Google Scholar 

  4. K. Leo, Nat. Rev. Mater. 1, 16056 (2016).

    Article  ADS  Google Scholar 

  5. P. Bi and X. Hao, Sol. RRL 3, 1800263 (2019).

    Article  Google Scholar 

  6. M. A. Green et al., Prog. Photovolt.: Res. Appl. 27, 565 (2019)

    Article  Google Scholar 

  7. J. Xue, B. P. Rand, S. Uchida and S. R. Forrest, Adv. Mater. 17, 66 (2005).

    Article  Google Scholar 

  8. A. J. Heeger, Adv. Mater. 26, 10 (2014).

    Article  Google Scholar 

  9. X. Huang et al., Appl. Phys. Lett. 116, 153501 (2020).

    Article  ADS  Google Scholar 

  10. Q. Burlingame et al., Nature 554, 70 (2018).

    Article  ADS  Google Scholar 

  11. F. Jin et al., Sci. Rep. 6, 26262 (2016).

    Article  ADS  Google Scholar 

  12. M. Hirade and C. Adachi, Appl. Phys. Lett. 99, 153302 (2011).

    Article  ADS  Google Scholar 

  13. E. J. Lee and S. O. Ryu, J. Korean Phys. Soc. 69, 806 (2016).

    Article  ADS  Google Scholar 

  14. G. Williams, S. Suttya and H. Aziza, Phys. Chem. Chem. Phys. 16, 11398 (2014).

    Article  Google Scholar 

  15. C. Kulshreshtha et al., Appl. Phys. Lett. 99, 023308 (2011).

    Article  ADS  Google Scholar 

  16. N. Li et al., Appl. Phys. Lett. 94, 023307 (2009)

    Article  ADS  Google Scholar 

  17. C. Wetzel et al., J. Mater. Chem. C 4, 3715 (2016).

    Article  Google Scholar 

  18. H-C. Ting et al., ChemSusChem 9, 1433 (2016).

    Article  Google Scholar 

  19. L. Yu et al., ACS Appl. Mater. Interfaces 11, 31087 (2019).

    Article  Google Scholar 

  20. L. Y. Lin et al., J. Am. Chem. Soc. 133, 15822 (2011).

    Article  Google Scholar 

  21. Y. H. Chen et al., J. Am. Chem. Soc. 134, 13616 (2012).

    Article  Google Scholar 

  22. Y-Q. Zheng et al., Appl. Phys. Lett. 102, 143304 (2013).

    Article  ADS  Google Scholar 

  23. H. Lee, J. Y. Kim and C. H. Lee, Int. J. Photoenergy 2012, 581421 (2012).

    Google Scholar 

  24. B-Q. Liu et al., Light Sci. Appl. 5, e16137 (2016).

    Article  Google Scholar 

  25. M. L. Brongersma, Y. Cui and S. Fan, Nat. Mater. 13, 451 (2014).

    Article  ADS  Google Scholar 

  26. F. D. Castroa, A. Laudani, F. R. Fulginei and A. Salvini, Sol. Energy 135, 590 (2016).

    Article  ADS  Google Scholar 

  27. S. Yoo, B. Domercq and B. Kippelen, J. Appl. Phys. 97, 103706 (2005).

    Article  ADS  Google Scholar 

  28. I. H. Campbell et al., Appl. Phys. Lett. 71, 3528 (1997).

    Article  ADS  Google Scholar 

  29. C. Voz et al., Org. Electron. 14, 1643 (2013).

    Article  Google Scholar 

  30. L. J. A. Koster, V. D. Mihailetchi, R. Ramaker and P. W. M. Blom, Appl. Phys. Lett. 86, 123509 (2005).

    Article  ADS  Google Scholar 

  31. M. M. Mandoc et al., Appl. Phys. Lett. 91, 263505 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Research Program funded by the SeoulTech (Seoul National University of Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Jun Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Kim, J.Y., Kim, J. et al. Effect of the Energy Level and the Carrier Mobility of the Hole Extraction Layer on the Performance of Planar-mixed Heterojunction Organic Solar Cells. J. Korean Phys. Soc. 77, 806–810 (2020). https://doi.org/10.3938/jkps.77.806

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.77.806

Keywords

Navigation