Skip to main content

Chronobioengineering

Introduction to Biological Rhythms with Applications, Volume 1

  • Book
  • © 2012

Overview

Part of the book series: Synthesis Lectures on Biomedical Engineering (SLBE)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 37.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (7 chapters)

About this book

This book represents the first in a two-volume set on biological rhythms. This volume focuses on supporting the claim that biological rhythms are universal and essential characteristics of living organisms, critical for proper functioning of any living system. The author begins by examining the potential reasons for the evolution of biological rhythms: (1) the need for complex, goal-oriented devices to control the timing of their activities; (2) the inherent tendency of feedback control systems to oscillate; and (3) the existence of stable and powerful geophysical cycles to which all organisms must adapt. To investigate the second reason, the author enlists the help of biomedical engineering students to develop mathematical models of various biological systems. One such model involves a typical endocrine feedback system. By adjusting various model parameters, it was found that creating a oscillation in any component of the model generated a rhythmic cascade that made the entire systemoscillate. This same approach was used to show how daily light/dark cycles could cascade rhythmic patterns throughout ecosystems and within organisms. Following up on these results, the author discusses how the twin requirements of internal synchronization (precise temporal order necessary for the proper functioning of organisms as complex, goal-oriented devices) and external synchronization (aligning organisms' behavior and physiology with geophysical cycles) supported the evolution of biological clocks. The author then investigates the clock systems that evolved using both conceptual and mathematical models, with the assistance of Dr. Bahrad Sokhansanj, who contributes a chapter on mathematical formulations and models of rhythmic phenomena. With the ubiquity of biological rhythms established, the author suggests a new classification system: the F4LM approach (Function; Frequency; waveForm; Flexibility; Level of biological system expressing rhythms; and Mode of rhythm generation) to investigate biological rhythms. This approach is first used on the more familiar cardiac cycle and then on neural rhythms as exemplified and measured by the electroencephalogram. During the process of investigating neural cycles, the author finds yet another reason for the evolution of biological rhythms: physical constraints, such as those imposed upon long distance neural signaling. In addition, a common theme emerges of a select number of autorhythmic biological oscillators imposing coherent rhythmicity on a larger network or system. During the course of the volume, the author uses a variety of observations, models, experimental results, and arguments to support the original claim of the importance and universality of biological rhythms. In Volume 2, the author will move from the establishment of the critical nature of biological rhythms to how these phenomena may be used to improve human health, well-being, and productivity. In a sense, Volume 1 focuses on the chronobio aspect of chronobioengineering while Volume 2 investigates methods of translating this knowledge into applications, the engineering aspect of chronobioengineering. Table of Contents: Time and Time Again / Walking on Air: An Empirical Proof-of-Concept / Clock Tech, Part 1 / Clock Tech II From External to Internal Timers / Clock Tech III Rise of the CircaRhythms / The Circle Game: Mathematics, Models, and Rhythms / The Power of Circular Reasoning

Authors and Affiliations

  • Drexel University, USA

    Donald McEachron

About the author

Dr. Donald L. McEachron is a Research Professor and Senior Lecturer and currently serves as the Coordinator for Academic Assessment and Quality Improvement for the School of Biomedical Engineering, Science and Health Systems at Drexel University. He holds a B.A. in Behavioral Genetics from the University of California at Berkeley and a Ph.D. in Neuroscience from the University of California at San Diego. In December 2006, Dr. McEachron received an M.S. in Information Science from Drexel University’s iSchool. Dr. McEachron has worked extensively in the areas of imaging, editing three monographs on imaging applications in biomedicine, as well as numerous papers and presentations. However, Dr. McEachron’s primary biomedical research has focused on chronobiology, biological rhythms, and human performance engineering.Dr.McEachron is presently developing programs to investigate the impact of light and circadian manipulations on human productivity, health, and well-being. In association witharchitects, civil engineers, and other engineers and social scientists, Dr.McEachron is working on the field of Indoor Ecology, examining how built environments influence human physiology and behavior. Dr.McEachron is also interested in investigating the impact of light and circadian manipulations on immune function in an animal model of AIDS. In addition, however, Dr.McEachron has published in a variety of other disciplines, including hominid evolution and education. He has served as PI or Co-PI on a variety of grants from both NIH and NSF involving autoradiographic image processing, neuroendocrinology and education. Dr. McEachron is currently involved in the design and implementation of computerassisted knowledge management systems to augment instruction and assist in the development of personalized educational approaches, originally funded by the National Science Foundation and is assisting in the development of specialized lighting systems for nursing facilities under a grant fromthe Green Building Alliance. In addition to his work at Drexel,Dr.McEachron serves as Chair of the Engineering in Biology and Medicine Society, Philadelphia Chapter, IEEE Philadelphia section. In 2005 and again in 2012, Dr. McEachron was trained as an IDEAL Scholar in assessment practices by ABET, Inc.

Bibliographic Information

Publish with us