Skip to main content

In Situ Characterization Methodology for the Design and Analysis of Composite Pressure Vessels

  • Book
  • © 2022

Overview

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (9 chapters)

Keywords

About this book

With his work, Martin Nebe provides principal insights into the mechanical response of composite pressure vessels subjected to internal pressure. By establishing and validating an in situ characterization methodology, the vessel’s geometry, its deformation behavior and the damage evolution process under internal pressure loading become accessible. This not only permits to trace back certain phenomena related to the manufacturing of these components but also allows to verify analytical and numerical modeling strategies. The exercised correlation of predicted and experimental results delivers detailed insights into design considerations to composite pressure vessels such as the definition of stacking sequence. The transfer of knowledge to a fullscale vessel geometry, which is representative for the use in fuel cell electric vehicles underlines the industrial application of this work. By combining numerical modeling, filament winding and experimental characterization, this work provides asound foundation for future developments in the area of composite pressure vessels used for hydrogen storage.


Authors and Affiliations

  • Stuttgart, Germany

    Martin Nebe

About the author

About the author

Martin Nebe worked as Ph.D. candidate at the Fuel Cell Department of an automotive company. In cooperation with the Department of Materials Test Engineering (WPT) at the TU Dortmund University, he completed his Ph.D. about the characterization, the analysis and the design of composite pressure vessels used for hydrogen storage.

Bibliographic Information

Publish with us