Skip to main content

Krylov Subspace Methods for Linear Systems

Principles of Algorithms

  • Book
  • © 2022

Overview

  • Is the first book to provide details on the COCR, BiCR, and GPBiCG methods to solve non-Hermitian linear systems
  • Describes theoretical applications to solve problems such as shifted linear systems and matrix functions
  • Shows practical applications, as in partial differential equations, computational physics, and (Riemannian) optimization

Part of the book series: Springer Series in Computational Mathematics (SSCM, volume 60)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (5 chapters)

Keywords

About this book

This book focuses on Krylov subspace methods for solving linear systems, which are known as one of the top 10 algorithms in the twentieth century, such as Fast Fourier Transform and Quick Sort (SIAM News, 2000). Theoretical aspects of Krylov subspace methods developed in the twentieth century are explained and derived in a concise and unified way. Furthermore, some Krylov subspace methods in the twenty-first century are described in detail, such as the COCR method for complex symmetric linear systems, the BiCR method, and the IDR(s) method for non-Hermitian linear systems.

The strength of the book is not only in describing principles of Krylov subspace methods but in providing a variety of applications: shifted linear systems and matrix functions from the theoretical point of view, as well as partial differential equations, computational physics, computational particle physics, optimizations, and machine learning from a practical point of view.

The book is self-contained in that basic necessary concepts of numerical linear algebra are explained, making it suitable for senior undergraduates, postgraduates, and researchers in mathematics, engineering, and computational science. Readers will find it a useful resource for understanding the principles and properties of Krylov subspace methods and correctly using those methods for solving problems in the future.


Authors and Affiliations

  • Department of Applied Physics, Nagoya University, Nagoya, Japan

    Tomohiro Sogabe

About the author

He is an associate professor at the department of Applied Physics, Nagoya University, Japan. His research interests include numerical linear algebra, numerical multilinear algebra, and scientific computing. He published over 70 research articles and is best known for extensions of the Conjugate Residual method: the BiCR method and the COCR method for large and sparse linear systems. He serves as an editor of Japan Journal of Industrial and Applied Mathematics, Springer, since 2019. He is a member of the board of directors of Japan SIAM since 2021.

Bibliographic Information

Publish with us