Skip to main content
  • 80 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature references

  • Abrahamsson, O. and Håkanson, L., 1997. Presentation and analysis of a model simulating the response of a potash treatment of a lake. J. Env. Radioactivity, 37:287–306.

    CAS  Google Scholar 

  • Abrahamsson, O. and Håkanson, L., 1998. Modelling seasonal flow variability of European rivers. Ecol. Modelling, 114:49–58.

    Article  CAS  Google Scholar 

  • Alberts, J.J., Tilly, L.J. and Vigerstad, T.J., 1979. Seasonal cycling of cesium-137 in a reservoir. Science, 203:649–651.

    CAS  Google Scholar 

  • Ambio, 1990. Special issue. Marine Eutrophication, 19: 102–176.

    Google Scholar 

  • Andersson, E., 1989. Incorporation of Cs-137 into fishes and other organisms. In: Feldt, W. (ed.). The radioecology of natural and artificial radionuclides. Verlag TUV, Köln. pp. 312–317.

    Google Scholar 

  • Anderson, T., Forsgren, G., Håkanson, L., Malmgren, L. and Nilsson, Å., 1990. Radioactive caesium in fish in Swedish lakes after Chernobyl (in Swedish). SSI Report 90-04, 41 p.

    Google Scholar 

  • Andersson, T., Håkanson, L., Kvarnäs, H. and Nilsson, Å., 1991. Measures against high levels of radiocesium in lake fish. Final report from the Liming-Mercury-Cesium project (in Swedish, Atgärder mot höga halter av radioaktivt cesium i insjöfisk. Slutrapport — för cesiumdelen av projektet Kalkning-kvicksilver-cesium). Statens strålskyddsinst., SSI Report 91-07, Stockholm, 114 p.

    Google Scholar 

  • Applegren, Å., Bergström, U., Brittain, J., Gallego Diaz, E., Håkanson, L., Heling, R. and Monte, L., 1996. An outline of a model-based expert system to identify optimal remedial strategies for restoring contaminated aquatic ecosystems: The project “MOIRA”. ENEA, ISSN/1120-5555, Roma, 45 p.

    Google Scholar 

  • Beck, M.B. and Van Straten, G., 1983 (eds). Uncertainty, system identification and the prediction of water quality. Springer, Heidelberg, 387 p.

    Google Scholar 

  • BIOMOVS (1990). Scenario Al. Mercury in aquatic ecosystems. Tech. Report 7. National Inst. of Radiation Prot., Stockholm, Sweden.

    Google Scholar 

  • Black, V.S., 1957. Excretion and osmoregulation. In: The Physiology of Fishes, Brown, M.E. (ed.). Academic Press, New York, Vol. 1, pp. 163–205.

    Google Scholar 

  • Bloesch, J. and Burns, N.M., 1980. A critical review of sedimentation trap technique. Schweiz. Z. Hydrol., 42:15–55.

    Google Scholar 

  • Bloesch, J. and Uehlinger, U., 1986. Horizontal sedimentation differences in a eutrophic Swiss lake. Limnol. Oceanogr., 31:1094–1109.

    CAS  Google Scholar 

  • Boers, P.C.M., Cappenberg, Th.E. and van Raaphorst, W., 1993 (eds). Proceedings of the Third International Workshop on Phosphorus in Sediments. Hydrobiologia, Vol. 253, 376 p.

    Google Scholar 

  • Brittain, J. E., 1998. European fish species of radioecological importance. ENEA, Rome, RT/AMB/98/4, pp. 19–21.

    Google Scholar 

  • Brittain, J., Håkanson, L., Bergström, U. and Bjørnstad, H. E., 1994. The significance of hydrological and catchment processes for the transport and biological uptake of radionuclides in northern aquatic ecosystems. Proceedings of the 10th International Northern Research Basins Symposium and Workshop, Spitsbergen, Norway.

    Google Scholar 

  • Broberg, A. and Andersson, E., 1989. Circulation of caesium in limnic ecosystems (in Swedish). Inst. of Limnology, Uppsala univ., 30 p.

    Google Scholar 

  • Burban, P.-Y., Lick, W. and Lick, J., 1989. The flocculation of fine-grained sediments in estuarine waters. J. Geophy. Res., 94:8223–8330.

    Google Scholar 

  • Burban, P.-Y., Xu, Y.-J., McNeiel, J. and Lick, W., 1990. Settling speeds of flocs in fresh water and seawater. J. Geophy. Res., 95: 18,213–18,220.

    Google Scholar 

  • Carlsson, L., Persson, J. and Håkanson, L., 1999. A management model to predict seasonal variability in oxygen concentration in thermally stratified coastal waters. Ecol. Modelling, 119: 117–134.

    Article  CAS  Google Scholar 

  • Carlsson, S., 1978. A model for the turnover of Cs-137 and potassium in pike (Esox Lucius). Health Phys., 35549–554.

    Google Scholar 

  • Chapra, S.C., 1980. Application of the phosphorus loading concept to the Great Lakes. In: Loehr, C., Martin, C.S. and Rast, W. (eds.), Phosphorus management strategies for lakes. Ann Arbor Science Publishers, Ann Arbor, pp. 135–152.

    Google Scholar 

  • Chow, V. T., 1988. Applied hydrology. McGraw-Hill, Inc., 572 p

    Google Scholar 

  • Comans, R.N.J. (ed.), 1998. Modelling fluxes and bioavailability of radiocesium and radiostrontium in freshwaters. Progress report from the ECOPRAQ project. Netherlands Energy Research Foundation.

    Google Scholar 

  • Comans, R.N.J. and Hockley, D.E., 1992. Kinetics of cesium sorption on illite. Geochim. Cosmochim. Acta, 56:1157–1164.

    CAS  Google Scholar 

  • Cox, D.C. and Baybutt, P., 1981. Methods for uncertainty analysis: a comparative survey. Risk Analysis, 1: 251–258.

    Google Scholar 

  • Dahlgaard, H. (ed.), 1994. Nordic radioecology, the transfer of radionuclides through nordic ecosystems to man. Elsevier Science, Amsterdam. 483 p.

    Google Scholar 

  • Desmet, G. et al. (eds), 1997. Freshwater and Estuarine Radioecology, Elsevier, Amsterdam, 501 p.

    Google Scholar 

  • Dyer, J.L., 1972. Estuarine hydrography and sedimentation. Cambridge Univ. Press, Cambridge, 230 p.

    Google Scholar 

  • Eberly, W.R., 1964. Further studies on the metalimnic oxygen maximum, with special reference to its occurrence throughout the world. Investigations of Indiana Lake Streams, Vol. 6.

    Google Scholar 

  • Erel, Y. and Stolper, E.M., 1993. Modeling of rare-earth element partitioning between particles and solution in aquatic environments. Geochimica Cosmochimica Acta, 57:513–518.

    Article  CAS  Google Scholar 

  • Eriksson, E., 1974. Water, the carrier of chemicals (in Swedish). Forskning och Framsteg, 5:41–45.

    Google Scholar 

  • Evans, R.D. and Håkanson, L., 1992. Measurement and prediction of sedimentation in small Swedish lakes. Hydrobiologia, 75: 143–152.

    Google Scholar 

  • Fernandez, J.A., Heredia, M.A., Garcia-Sanchez, M.J., Corisco, J.A.G., Vaz Carreiro, M.C., Diez de los Rios, A., 1997. Mechanisms of radiocesium uptake and accumulation in Riccia fluitans. In: Desmet, G. et al. (eds), Freshwater and Estuarine Radioecology, Elsevier, Amsterdam, pp. 329–338.

    Google Scholar 

  • Fleishman, D.G., 1963. Accumulation of artificial radionuclides in freshwater fish. In: Radioecology, Klechkovskii, V.M., Polikarpov, G.G. and Aleksakhin, R.M. (editors). Wiley, New York, pp. 347–370.

    Google Scholar 

  • Floderus, S., 1989. The effect of sediment resuspension on nitrogen cycling in the Kattegatt — variability in organic matter transport. Thesis, Uppsala Univ., UNGI Report, 71.

    Google Scholar 

  • FRP. 1978. The sea; natural conditions and use (in Swedish, Havet; naturförhållanden och utnyttjande). Fysisk riksplanering (FRP), Bostadsdepartementet, Nr 7, 303 p.

    Google Scholar 

  • Gilbert, R.O., 1987. Statistical methods for environmental pollution monitoring. Van Nostrand Reinold Co., New York.

    Google Scholar 

  • Grip, H. and Rodhe, A., 1985. Vattnets väg från regn till bäck (The flow of water from rain to river; in Swedish). Forskningsrådens Förlagstjänst, Karlshamn, 156 p.

    Google Scholar 

  • Gustafsson, Ö. and Gschwend, P. M., 1997. Aquatic colloids: Concepts, definitions and current challenges. Limnol. Oceanogr., 42:519–528.

    Article  CAS  Google Scholar 

  • Håkanson, L., 1977. The influence of wind, fetch, and water depth on the distribution of sediments in Lake Vänern, Sweden. Can. J. Earth Sci., 14:397–412.

    Google Scholar 

  • Håkanson, L., 1981. A manual of lake morphometry. Springer, Heidelberg, 78 p.

    Google Scholar 

  • åkanson, L., 1986. The Swedish coastal zone project — sediment types and morphometry. In: Sly, P. G. (ed.), Sediment and water interactions, Springer-Verlag, New York, pp. 35–51.

    Google Scholar 

  • Håkanson, L., 1990. A new functional view of the Baltic Sea. Ambio, Special Report 7:19.

    Google Scholar 

  • Håkanson, L., 1991, Ecometric and Dynamic Modelling — exemplified by cesium in lakes after Chernobyl. Springer-Verlag, Berlin, 158 p.

    Google Scholar 

  • Håkanson, L., 1995. Optimal size of predictive models. Ecol. Modelling, 78: 195–204.

    Google Scholar 

  • Håkanson, L., 1996. A new, simple, general technique to predict seasonal variability of river discharge and lake temperature for lake ecosystem models. Ecological Modelling 88:157–18.

    Google Scholar 

  • Håkanson, L., 1997. Modelling of radiocesium in lakes — on predictive power and lessons for the future. In: Desmet, G. et al. (eds), Freshwater and Estuarine Radioecology, Elsevier, Amsterdam, pp. 3–45.

    Google Scholar 

  • Håkanson, L., 1998a. A compilation of empirical data and variations in data concerning radiocesium in water, sediments and fish in European lakes after Chernobyl. J. Env. Radioactivity (in press).

    Google Scholar 

  • Håkanson, L., 1999. Water Pollution — methods and criteria to rank, model and remediate chemical threats to aquatic ecosystems. Backhuys Publishers, Leiden, 277 p.

    Google Scholar 

  • Håkanson, L. and Andersson, T., 1992. Remedial measures against radioactive caesium in Swedish lake fish after Chernobyl. Aquatic Sci., 54:141–164.

    Google Scholar 

  • Håkanson, L. and Jansson, M., 1983. Principles of Lake Sedimentology. Springer, Berlin, 316 p.

    Google Scholar 

  • Håkanson, L., Kulinski, I. and Kvarnäs, H., 1984. Water dynamics and bottom dynamics in the coastal zone (in Swedish, Vattendynamik och bottendynamik i kustzonen). National Swedish Environmental Protection Agency, SNV PM 1905, Solna, 228 p.

    Google Scholar 

  • Håkanson, L., Kvarnäs, H. and Karlsson, B., 1986. Coastal morphometry as regulator of water exchange — a Swedish example. Estuarine, Coastal & Shelf Science, 23:1–15.

    Google Scholar 

  • Håkanson, L. and Peters, R.H., 1995. Predictive Limnology. Methods for predictive modelling. SPB Academic Publishing, Amsterdam, 464 p.

    Google Scholar 

  • Håkanson, L. and Rosenberg, R., 1985. Practical coastal ecology (in Swedish, Praktisk kustekologi). Swedish Environmental Protection Agency, PM 1987, Solna, 110 p.

    Google Scholar 

  • Håkanson, L., Andersson, T., Neumann, G., Nilsson, Å. and Notter, M., 1988. Cesium in perch in lakes from northern Sweden after Chernobyl — present situation, causal relationships, the future (In Swedish, Cesium i abborre i norrländska sjöar efter Tjernobyl-läget, orsakssamband, framtiden). SNV Report 3497, 136 p.

    Google Scholar 

  • Håkanson, L., Andersson, T. and Nilsson, Å., 1992. Radioactive caesium in fish in Swedish lakes 1986–1988 — general pattern related to fallout and lake characteristics. J. Env. Radioactivity, 15:207–229.

    Google Scholar 

  • Håkanson, L., Jonsson, B., Jonsson, P. and Martinsen, K., 1988b. Impact areas of chlorinated organics from paper and pulp mill (in Swedish, Påverkansområden av klorerat organiskt material från massablekerier. Slutrapport). Swedish Environmental Protection Agency, Report 3522, Stockholm, 165 p.

    Google Scholar 

  • Håkanson, L., Brittain, J., Monte, L., Heling, R., Bergström, U. and Suolanen, V., 1996a. Modelling of radiocesium in lakes-the VAMP-model. J. Environ. Radioactivity, 33:255–308.

    Google Scholar 

  • Håkanson, L., Brittain, J., Monte, L., Heling, R., Bergström, U. and Suolanen, V., 1996b. Modelling of radiocesium in lakes-lake sensitivity and remedial strategies. J. Environ. Radioactivity, 33:1–25.

    Google Scholar 

  • Håkanson, L., Abrahamsson, O., Ottosson, F., and Johansson, T., 1998a. Presentation and analysis of a model simulating the response of lake fertilisation. J. Environ. Radioactivity, 41:343–380.

    Google Scholar 

  • Hamby, D.M., 1995. A comparison of sensitivity analysis techniques. Health Physics, 68:195–204.

    CAS  Google Scholar 

  • Hilton, J., 1985. A conceptual framework for predicting the occurrence of sediment focusing and sediment redistribution in small lakes. Limnol. Oceanogr., 30:1131–1143.

    Google Scholar 

  • Hilton, J., 1997. Aquatic radioecology post Chernobyl-a review of the past and a look to the future. In: Desmet, G. et al. (eds), Freshwater and Estuarine Radioecology, Elsevier, Amsterdam, pp. 47–73.

    Google Scholar 

  • Hinton, T. G., 1993. Sensitivity analysis of ecosys-87: an emphasis on the ingestion pathway as a function of radionuclide and type of disposition. Health Physics, 66:513–531.

    Google Scholar 

  • IAEA, 1988. International Atomic Energy Agency. Assessing the impact of deep sea disposal of low level radioactive waste on living marine resources. Tech. Rep. No. 288, Vienna

    Google Scholar 

  • IAEA, 1992. International Atomic Energy Agency. Effects of ionizing radiation on plants and animals at levels implied by current radiation protection standards. Tech. Rep. No. 332, Vienna.

    Google Scholar 

  • IAEA, 1999. International Atomic Energy Agency. Modelling of Radiocesium in lakes. Tec. Doc. (in print), Vienna.

    Google Scholar 

  • ICME, 1995. The International Council on Metals and the Environment. Persistence, bioaccumulation and toxicity of metals and metal compounds. Parametrix Inc., ISBN-1-895720-07-9.

    Google Scholar 

  • ICRP,1977. International Commission of Radiological Protection. Recommendations of the International Commission of Radiological Protection, Publication 26, Pergamon Press, Oxford

    Google Scholar 

  • Jansson, M., Hayman, U. and Forsberg, C., 1981. Acid lakes and “biological buffering” (in Swedish). Vatten, 37:241–251.

    CAS  Google Scholar 

  • Jimenez, F. and Gallego, E., 1998. Effects of radiation on aquatic organisms. Preprint, from the MOIRA project, Univ. de Politech. de Madrid, Spain, 9 p.

    Google Scholar 

  • Jonsson, A., 1997. Whole lake metabolism of allochthonous organic material and the limiting nutrient concept in Lake Örträsket, a large humic lake in northern Sweden. Diss. Dept. of Physical Geography, Univ. Univ., Sweden, ISBN 91-7191-382-3.

    Google Scholar 

  • Jonsson, P., 1992. Large-scale changes of contaminants in Baltic Sea sediments during the twentieth century. Thesis, Uppsala Univ., Sweden.

    Google Scholar 

  • Jørgensen, S.E., Kamp-Nielsen, L. and Jörgensen, L.A., 1986. Examination of the generality of eutrophication models. Ecol. Modelling, 32:251–266.

    Google Scholar 

  • Jørgensen, S.E. and Johnsen, J., 1989. Principles of environmental science and technology (2nd edition). Studies in environmental science, 33. Elsevier, Amsterdam, 628 p.

    Google Scholar 

  • Konitzer, K. and Meili, M., 1997. Redistribution of sedimentary Cs-137 in small Swedish lakes after the Chernobyl fallout 1986. In: Desmet, G. (et al., editors), Freshwater and Estuarine Radioecology, pp. 167–172, Elsevier, Amsterdam.

    Google Scholar 

  • Konoplev, A., Bulgakov, A., Hilton, J., Comans, R. and Popov, V., 1997. Long-term kinetics of radiocesium fixation by soils. In: Desmet, G. (et al., editors), Freshwater and Estuarine Radioecology, pp. 173–182, Elsevier, Amsterdam.

    Google Scholar 

  • Kranck, K., 1973. Flocculation of suspended sediment in the sea. Nature, 246:348–350.

    Article  Google Scholar 

  • Kranck, K., 1979. Particle matter grain-size characteristics and flocculation in a partially mixed estuary. Sedimentology, 28:107–114.

    Google Scholar 

  • Lick, W., Lick, J. and Ziegler, C.K., 1992. Flocculation and its effect on the vertical transport of fine-grained sediments. Hydrobiologia, 235/236:1–16.

    Article  Google Scholar 

  • Lindström, M., Håkanson, L., Abrahamsson, O. and Johansson, H., 1999. An empirical model for prediction of lake water suspended matter. Ecol. Modelling, 121:185–198.

    Google Scholar 

  • Lozán, J.L., Lampe, R., Mattäus, W., Rachor, E., Rumohr. H. und von Westernhagen, H. (editors), 1996.Warnsignale aus der Ostsee. Pary, Buchverlag, Berlin, 385 p.

    Google Scholar 

  • McCave, I.N., 1981. Location of coastal accumulations of fine sediments around the southern North Sea. Rapp. P. v. Reun. Int. Explor. Mer., 181:15–27.

    Google Scholar 

  • Madruga, M.J. and Cremers, A., 1997. On the differential binding mechanisms of radiostrontium and radiocesium in sediments. In: Desmet, G. (et al., editors), Freshwater and Estuarine Radioecology, pp. 207–216, Elsevier, Amsterdam.

    Google Scholar 

  • Moberg, L. (ed.), 1991. The Chernobyl Fallout in Sweden. The Swed. Rad. Prot. Inst., Stockholm, 633 p.

    Google Scholar 

  • Monte, L., 1995. A simple formula to predict approximate initial contamination of lake water following a pulse deposition of radionuclide. Health Physics, Vol. 68, Nr. 3.

    Google Scholar 

  • Monte, L., 1996. Collective models in environmental science. Sci. Tot. Environ., 192:41–47.

    CAS  Google Scholar 

  • Monte, L., Håkanson, L and Brittain, J., 1997. Prototype models for the MOIRA computerised system. ENEA, ISSN/1120–5555, Roma, 90 p.

    Google Scholar 

  • Muir Wood, A.M., 1969. Coastal hydraulics. Macmillan, London, 187 p.

    Google Scholar 

  • Nixon, S.W., 1990. Marine eutrophication: a growing international problem. Ambio, 3:101.

    Google Scholar 

  • Nyström, U., 1985. Transit time distribution of water in two small forested catchments. Ecol. Bull., Stockholm, 37:98–100.

    Google Scholar 

  • Ottosson, F. and Håkanson, L., 1997. Presentation and analysis of a model simulating the pH response of a lake liming. Ecol. Modelling, 105:89–111.

    Article  CAS  Google Scholar 

  • Ottosson, F. and Abrahamsson, O., 1998. Presentation and analysis of a model simulating epilimnetic and hypolimnetic temperatures in lakes. Ecol. Modelling, 110:223–253.

    Article  Google Scholar 

  • Persson, C., Rodhe, H. and De Geer, L.-E., 1987. The Chernobyl accident—A meteorological analysis of how radionuclides reached and were deposited in Sweden. Ambio, 16:20–31.

    CAS  Google Scholar 

  • Persson, J. and Håkanson, L., 1995. Prediction of bottom dynamic conditions in coastal waters. Mar. and Freshw. Res., 46:359–371.

    Google Scholar 

  • Persson, J. and Håkanson, L., 1996. A simple empirical model to predict deepwater turnover time in coastal waters. Can. J. Fish. Aq. Sci., 53:1236–1245.

    Article  Google Scholar 

  • Persson, J., Häkanson, L. and Pilesjö, P., 1994. Prediction of surface water turnover time in coastal waters using digital bathymetric information. Environmentrics, 5:433–449.

    Article  Google Scholar 

  • Peters, R.H., 1986. The role of prediction in limnology. Limnol. Oceanogr., 31:1143–1159.

    Article  CAS  Google Scholar 

  • Peters, R.H., 1991. A Critique for Ecology. Cambridge Univ. Press, Cambridge, 366 p.

    Google Scholar 

  • Pilesjö, P., Persson, J. and Håkanson, L., 1991. Digital bathymetric information for calculations of coast morphometrical parameters and surface water retention time (in Swedish with English summary). Swedish Environmental Protection Agency, Report 3916, 76 p.

    Google Scholar 

  • Postma, H., 1982. Sediment transport and sedimentation. In: Olausson, E. and Cato, I. (eds), 1982, Chemistry and biogeochemistry of estuaries, Wiley & Sons, ChiChester, pp. 153–186

    Google Scholar 

  • Prairie, Y., 1996. Evaluating the predictive power of regression models. Can. J. Fish. Aquat. Sci., 53:490–492.

    Article  Google Scholar 

  • Pustelnikov, OS., 1977. Geochemical features of suspended matter in connection with recent sedimentation processes in the Baltic Sea. Ambio, 5:157–162.

    CAS  Google Scholar 

  • Redfield, A.C., 1958. The biological control of chemical factors in the environment. Am. Sci., 46:205–222.

    CAS  Google Scholar 

  • Remane, A., 1934. Die Brackwasserfauna. Verh Dt. Zool. Ges., 36:34–74.

    Google Scholar 

  • Riise, G., Björnstad, H.E., Oughton, D.H. and Salbu, 1990. A study on radionuclide associations with soil components using sequential extraction procedure. J. Radioanal. Nucl. Chem., 142:531–538.

    CAS  Google Scholar 

  • Rodhe, A,, 1987. The origin of streamwater traced by oxygen-18. Thesis, Uppsala univ., Series A, No. 41,260 p

    Google Scholar 

  • Rose, K.A., McLean, R.I. and Summers, J.K., 1989. Development and Monte Carlo analysis of an oyster bioaccumulation model applied to biomonitoring. Ecol. Modelling, 45:111–132.

    Article  CAS  Google Scholar 

  • Rowan, D.J. and Rasmussen, J.B., 1994a. Bioaccumulation of radiocesium by fish: the influence of physicochemical factors and trophic structure. Can. J. Fish. Aquat. Sci., 51:2388–2410.

    CAS  Google Scholar 

  • Rowan, D.J. and Rasmussen, J.B., 1995. The elimination of radiocesium from fish. J. Appl. Ecology., 32:739–744.

    CAS  Google Scholar 

  • Ryther, J.H. and Dunstan, W.M., 1971. Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Science, 171:1008–1013.

    CAS  Google Scholar 

  • Santschi, P.H. and Honeyman, B.D., 1991. Radioisotopes as tracers for the interactions between trace elements, colloids and particles in natural waters. In: Vernet, J.-P., ed. Heavy Metals in the Environment, Elsevier Amsterdam.

    Google Scholar 

  • Schindler, D.W., 1977. Evolution of phosphorus limitation in lakes. Science, 195:260–262.

    CAS  Google Scholar 

  • Schindler, D.W., 1978. Factors regulating phytoplankton production and standing crop in the world’s freshwaters. Limnol. Oceanogr., 23:478–486.

    Google Scholar 

  • Schulze, E.-D. and Zwölfer, H. (eds), 1987. Potentials and Limitations of Ecosystem Analysis. Springer, Heidelberg, 435 p.

    Google Scholar 

  • Seibold, E. and Berger, W.H., 1982. The sea floor. Springer-Verlag, Heidelberg, 288 p.

    Google Scholar 

  • SMHI, 1995a. Vattenföring iSverige. Del l.Vattendrag till Bottenviken. [Water discharge in Sweden. Part l. Water paths to the northern Gulf of Bothnia]. SMHI, Norrköping.

    Google Scholar 

  • SMHI, 1995b. Vattenföring iSverige. Del 2. Vattendrag till Bottenhavet. [Water discharge in Sweden. Part 2. Water paths to the Sea of Bothnia), SMHI, Norrköping.

    Google Scholar 

  • SMHI, 1995c. Vattenföring i Sverige. Del 3. Vattendrag till Egentliga Östersjön. [Water discharge in Sweden. Part 4. Water paths to the Baltic Proper]. SMHI, Norrköping.

    Google Scholar 

  • SMHI, 1995d. Vattenföring iSverige. Del 4. Vattendrag till Västerhavet [Water discharge in Sweden. Part 44. Water paths to the Western sea]. SMHI, Norrköping.

    Google Scholar 

  • Smith, J.T., Leonard, D.R.P., Hilton, J. and Appleby, P.G., 1997. Towards a generalized model for the primary and secondary contamination of lakes by Chernobyl-driven radiocesium. Health Physics, 72:880–892.

    Article  CAS  Google Scholar 

  • Stanley, D.J. and Swift, D.J., (eds), 1976. Marine sediment transport and environmental management. Wiley & Sons, New York, 602 p.

    Google Scholar 

  • Straskraba, M. and Gnauck, A., 1985. Freshwater Ecosystems. Modelling and Simulation Developments in Environmental Modelling, 8. Elsevier, Amsterdam, 310 p.

    Google Scholar 

  • Tiwari, J.L. and Hobbie, J.E., 1976. Random differential equations as models of ecosystems. Monte Carlo simulation approach. Math. Biosci., 28:25–44.

    Google Scholar 

  • UNESCO, 1993. Discharge of selected rivers of the world. Volume II (part II). Monthly and annual discharges recorded at various selected stations 20-years catalogue (1965–1984). Gidrometeoizdat, St. Petersburg.

    Google Scholar 

  • USNRC, 1978. United States Nuclear Regulatory Commission. Liquid Pathway Generic Study. Impacts of accidental radioactive releases to the hydrosphere from floating and land-based nuclear power plants. NUREG-0440, USNRC, Washington. Vemuri, V., 1978. Modeling of complex systems. Academic Press, New York, 448 p.

    Google Scholar 

  • Voipio, A. (ed.), 1981. The Baltic Sea. Elsevier Oceanographic Series, Amsterdam, 418 p.

    Google Scholar 

  • Vollenweider, R.A., 1968. The scientific basis of lake eutrophication, with particular reference to phosphorus and nitrogen as eutrophication factors. Tech. Rep. DAS/DSI/68.27, OECD, Paris, 159 pp.

    Google Scholar 

  • Wallin, M., Håkanson, L. and Person, J., 1992. Load models for nutrients in coastal areas, especially from fish farms (in Swedish with English summary). Nordiska ministerrådet, 1992:502, Copenhagen, 207 p.

    Google Scholar 

  • Wetzel, R.G., 1983. Limnology. Saunders College Publ., 767 p.

    Google Scholar 

  • Whicker, F.W., 1997. Measurement quantities and units. Preprint from an International Workshop on Measuring Radionuclides in the Environment: Radiological Quantities and Sampling Designs, Bad Honnef, Germany, Nov., 1997.

    Google Scholar 

  • Whicker, F.W. and Schultz, V., 1982. Radioecology: Nuclear Energy and the Environment. Volume 1, CRC Press, Boca Raton, 228 p.

    Google Scholar 

  • Worley, B.A., 1987. Deterministic uncertainty analysis. Oak Ridge National Laboratory Report ORNL-6428, Oak Ridge, U.S.A., 53 p.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2002). Literature References. In: Modelling radiocesium in lakes and coastal areas — new approaches for ecosystem modellers. Springer, Dordrecht. https://doi.org/10.1007/0-306-46878-6_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-46878-6_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6245-6

  • Online ISBN: 978-0-306-46878-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics