Skip to main content

Relative Contributions of the Cerebellar Cortex and Cerebellar Nucleus to Eyelid Conditioning

  • Chapter
Eyeblink Classical Conditioning: Volume 2

Conclusions

We have presented data addressing the relative contributions of the cerebellar cortex and nuclei in the acquisition and expression of conditioned eyelid responses. Data from a series of studies support the notion that while plasticity occurs in both the cerebellar cortex and nucleus, the cerebellar cortex is essential for acquisition, extinction, and for the proper expression of conditioned eyelid responses. We have presented arguments that the experiments that support this position were designed in ways to preclude confounds that were present in other attempts to identify the role of the cerebellar cortex in eyelid conditioning. We have also presented evidence that suggests plasticity in both the cerebellar cortex and nucleus is required for the expression of a conditioned response, and that reversing this plasticity only in the cerebellar cortex may be sufficient to produce extinction of conditioned responses. Computer simulations based on the connectivity of the cerebellum and on the sites and rules

for plasticity suggested by our studies are able to acquire properly timed conditioned responses, and to extinguish responses with CS-alone presentations. These simulations will provide many empirically testable predictions that should facilitate our understanding of the cerebellar mechanisms of eyelid conditioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aizenman, C.D.. Manis, P.B., & Linden, D.J. (1998). Polarity of long-term synaptic gain change is related to postsynaptic spike firing at a cerebellar inhibitory synapse. Neuron 21, 827–835.

    Article  PubMed  Google Scholar 

  • Albus, J.S. (1971). A theory of cerebellar function. Mathematical Bioscience, 10, 25–61.

    Google Scholar 

  • Bloedel, J.R. (1992). Functional heterogeneity with structural homogeneity: How does the cerebellum operate? Behavioral Neuroscience, 15, 666–678.

    Google Scholar 

  • Bloedel. J.R., & Bracha, V. (1995). On the cerebellum, cutaneomuscular reflexes, movement control and the elusive engrams of memory. Behavioural Brain Research, 68, 1–44.

    Article  PubMed  Google Scholar 

  • De Schutter, E. (1995). Cerebellar long-term depression might normalize excitation of Purkinje cells: A hypothesis. Trends in Neuroscience, 18, 291–295.

    Google Scholar 

  • De Schutter E., & Maex, R. (1996). The cerebellum: cortical processing and theory. Current Opinions in Neurobiology, 6, 759–764.

    Google Scholar 

  • Garcia, K.S., & Mauk, M.D. (1995). Cerebellar cortex is necessary for acquisition of Pavlovian eyelid responses. Society for Neuroscience Abstracts, 21, 1222.

    Google Scholar 

  • Garcia, K.S., Mauk, M.D. (1998a). Pavlovian eyelid conditioning affects the amplitude and frequency of short-latency responses observed following pharmacological block of cerebellar cortex output. Society of Neuroscience Abstracts. 24, 444.

    Google Scholar 

  • Garcia, K. S., & Mauk, M. D. (1998b). Pharmacological analysis of cerebellar contributions to the timing and expression of conditioned responses. Neuropharmacology, 37, 471–480.

    Article  PubMed  Google Scholar 

  • Garcia, K.S., Stele, P.M., Mauk, M.D. (in press). Cerebellar cortex lesions prevent the acquisition of Pavlovian eyelid responses. Journal of Neuroscience.

    Google Scholar 

  • Harvey, J.A., Welsh, J.P., Yeo, C.H., & Romano, A.G. (1993). Recoverable and nonrecoverable deficits in conditioned responses after cerebellar cortical lesions. Journal of Neuroscience, 13, 1624–1635.

    PubMed  Google Scholar 

  • Hesslow, G. (1994). Inhibition of classically conditioned eyeblink responses by stimulation of the cerebellar cortex in the decerebrate cat. Journal of Physiology (London), 476, 245–256.

    Google Scholar 

  • Hesslow, G., & Ivarsson, M. (1994). Suppression of cerebellar Purkinje cells during conditioned responses in ferrets. Neuroreport, 5, 649–652.

    PubMed  Google Scholar 

  • Ito, M. (1982). Cerebellar control of the vestibulo-ocular reflex — around the flocculus hypothesis. Annual Review of Neuroscience, 5, 275–298.

    Article  PubMed  Google Scholar 

  • Ito, M., & Kano, M. (1982a). Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neuroscience Letters, 33, 253–258.

    Article  PubMed  Google Scholar 

  • Ito, M., Sakurai, M., & Tongroach, P. (1982b). Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. Journal of Physiology (London), 324, 113–134.

    Google Scholar 

  • Kenyon, G.T., Medina, J.F., & Mauk, M.D. (1998a). A mathematical model of the cerebellar-olivary system I: Self-regulating equilibrium of climbing fiber activity. Journal of Computational Neuroscience, 5, 17–33.

    PubMed  Google Scholar 

  • Kenyon, G.T., Medina, J.F., & Mauk, M.D. (1998b). A mathematical model of the cerebellar-olivary system II. Motor adaptation through systematic disruption of climbing fiber equilibrium. Journal of Computational Neuroscience, 5, 17–33.

    PubMed  Google Scholar 

  • Krupa, D.J., Thompson, J.K., & Thompson, R.F. (1993). Localization of a memory trace in the mammalian brain. Science, 260, 989–991.

    PubMed  Google Scholar 

  • Krupa, D.J., & Thompson, R.F. (1995). Inactivation of the superior cerebellar peduncle blocks expression but not acquisition of the rabbit’s classically conditioned eye-blink response. Proceedings of the National Academy of Sciences, (U.S.A), 92, 5097–5101.

    Google Scholar 

  • Krupa, D.J., & Thompson, R.F. (1997). Reversible inactivation of the cerebellar interpositus nucleus completely prevents acquisition of the classicaly conditioned eye-blink response. Learning and Memory, 3, 545–556.

    PubMed  Google Scholar 

  • Lavond, D.G., & Steinmetz, J.E. (1989). Acquisition of classical conditioning without cerebellar cortex. Behavioural Brain Research, 33, 113–164.

    PubMed  Google Scholar 

  • Lavond, D.G., Steinmetz, J.E., Yokaitis, M.H., & Thompson, R.F. (1987). Reacquisition of classical conditioning after removal of cerebellar cortex. Experimental Brain Research, 67, 569–593.

    Article  Google Scholar 

  • Lewis, J.L., LoTurco, J.J., & Solomon, P.R. (1987). Lesions of the middle cerebellar peduncle disrupt acquisition and retention of the rabbit’s classically conditioned nictitating membrane response. Behavioral Neuroscience, 101, 151–157.

    Article  PubMed  Google Scholar 

  • Linden, D.J., & Connor, J.A. (1993). Cellular mechanisms of long-term depression in the cerebellum. Current Opinion in Neurobiology. 3, 401–6.

    Article  PubMed  Google Scholar 

  • Linden, D.J., Dickinson, M.H., Smeyne, M., & Connor, J.A. (1991). A long-term depression of AMPA currents in cultured cerebellar Purkinje neurons. Neuron, 7, 81–9.

    Article  PubMed  Google Scholar 

  • Lisberger, S.G. (1988). The neural basis for learning of simple motor skills. Science, 242, 728–35.

    PubMed  Google Scholar 

  • Lisberger, S.G., Pavelko, T.A., & Broussard, D.M. (1994). Neural basis for motor learning in the vestibuloocular reflex of primates. I. Changes in the responses of brain stem neurons. Journal of Neurophysiology, 72, 928–953.

    PubMed  Google Scholar 

  • Llinas, R., Lang, E.J., & Welsh, J.P. (1997). The cerebellum, LTD, and memory: alternative views. Learning and Memory, 3, 445–455.

    PubMed  Google Scholar 

  • Llinas, R., & Muhlethaler, M. (1988). An electrophysiological study of the in vitro, perfused brain stemcerebellum of adult guinea-pig. Journal of Physiology, (London), 404, 215–240.

    Google Scholar 

  • Llinas, R., & Welsh, J.P. (1993). On the cerebellum and motor learning. Current Opinion in Neurobiology, 3, 958–965.

    Article  PubMed  Google Scholar 

  • Marr, D. (1969). A theory of cerebellar cortex. Journal of Physiology, (London), 202, 437–70.

    Google Scholar 

  • Mauk, M.D. (1997). Roles of cerebellar cortex and nuclei in motor learning: Contradictions of clues? Neuron, 18, 343–346.

    Article  PubMed  Google Scholar 

  • Mauk, M.D. (1998). More than just another modifiable synapse. Neuron, 21, 649–651.

    Article  PubMed  Google Scholar 

  • Mauk, M.D., & Donegan, N.H. (1997). A model of Pavlovian eyelid conditioning based on the synaptic organization of the cerebellum. Learning and Memory, 3, 130–158.

    Google Scholar 

  • Mauk, M.D., Garcia, K.S., Medina, J.F., & Steele, P.M. (1998). Does cerebellar LTD mediate motor learning? Toward a resolution without a smoking gun. Neuron, 20, 359–362.

    Article  PubMed  Google Scholar 

  • Mauk, M.D., & Ruiz, B.P. (1992). Learning-dependent timing of Pavlovian eyelid responses: differential conditioning using multiple interstimulus intervals. Behavioral Neuroscience, 106, 666–681.

    Article  PubMed  Google Scholar 

  • Mauk, M.D., Steele, P.M., & Medina, J.F. (1997). Cerebellar involvement in motor learning. Neuroscientist, 3, 303–313.

    Google Scholar 

  • Mauk, M.D., Steinmetz, J.E., & Thompson, R.F. (1986). Classical conditioning using stimulation of the inferior olive as the unconditioned stimulus. Proceedings of the National Academy of Sciences, (U.S.A.), 83, 5349–5353.

    Google Scholar 

  • Matzel, L.D., & Shors, T.J. (1997). Long-term potentiation: What’s learning got to do with it? Behavioural Brain Sciences, 2, 0597–655.

    Google Scholar 

  • McCormick, D.A., Clark, G.A., Lavond, D.G., & Thompson, R.F. (1982). Initial localization of the memory trace for a basic form of learning. Proceedings of the National Academy of Sciences, (U.S.A.), 79, 2731–2735.

    Google Scholar 

  • McCormick, D.A., Steinmetz, J.E., & Thompson, R.F. (1985). Lesions of the inferior olivary complex cause extinction of the classically conditioned eyeblink response. Brain Research, 359, 120–130.

    Article  PubMed  Google Scholar 

  • McCormick, D.A., & Thompson, R.F. (1984a). Cerebellum: essential involvement in the classically conditioned eyelid response. Science, 223, 296–299.

    PubMed  Google Scholar 

  • McCormick, D.A., & Thompson, R.F. (1984b). Neuronal responses of the rabbit cerebellum during acquisition and performance of a classically conditioned nictitating membrane-eyelid response. Journal of Neuroscience, 4, 2811–2822.

    PubMed  Google Scholar 

  • Miall, R.C., Keating, J.G., Malkmus, M., & Thach, W.T. (1998). Simple spike activity predicts occurrence of complex spikes in cerebellar Purkinje cells. Nature Neuroscience, I, 13–15.

    Google Scholar 

  • Miles, F.A., & Lisberger, S.G. (1981). Plasticity in the vestibulo-ocular reflex: A new hypothesis. Annual Review of Neuroscience, 4, 273–299.

    Article  PubMed  Google Scholar 

  • Millenson, J.R., Kehoe, E.J., & Gormezano, I. (1977). Classical conditioning of the rabbit’s nictitating membrane response under fixed and mixed CS-US intervals. Learning and Motivation, 8, 351–366.

    Article  Google Scholar 

  • Perrett, S.P., & Mauk, M.D. (1995). Extinction of conditioned eyelid responses requires the anterior lobe of cerebellar cortex. Journal of Neuroscience, 15, 2074–2080.

    PubMed  Google Scholar 

  • Perrett, S.P., Ruiz, B.P., & Mauk, M.D. (1993). Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses. Journal of Neuroscience, 13, 1708–1718.

    PubMed  Google Scholar 

  • Raymond, J.L., & Lisberger, S.G. (1998). Neural learning rules for the vestibulo-ocular reflex. Journal of Neuroscience, 18, 9112–9129.

    PubMed  Google Scholar 

  • Raymond, J.L., Lisberger, S.G., & Mauk, M.D. (1996). The cerebellum: a neuronal learning machine? Science, 272, 1126–1131.

    PubMed  Google Scholar 

  • Sakurai, M. (1987). Synaptic modification of parallel fibre-Purkinje cell transmission in in vitro guinea-pig cerebellar slices. Journal of Physiology, (London), 394, 463–480.

    Google Scholar 

  • Salin, P.A., Malenka, R.C., & Nicoll, R.A. (1996). Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron, 16, 797–803.

    Article  PubMed  Google Scholar 

  • Schreurs, B.G., & Alkon, D.L. (1993). Rabbit cerebellar slice analysis of long-term depression and its role in classical conditioning. Brain Research, 631, 235–240.

    Article  PubMed  Google Scholar 

  • Stele, P.M., Medina, J.F., Nores, W.L., & Mauk, M.D. (1998). Using genetic mutations to study the neural basis of behavior. Cell, 95, 879–882.

    Google Scholar 

  • Steele, P.M., Nores, W.L., Medina, J.F., & Mauk, M.D. (1999). Induction of plasticity in the interpositus nucleus during eyelid conditioning requires input from the cerebellar cortex. Cold Spring Harbor Abstracts.

    Google Scholar 

  • Steinmetz, J.E. (1990). Classical nictitating membrane conditioning in rabbits with varying interstimulus intervals and direct activation of cerebellar mossy fibers as the CS. Behavioural Brain Research, 38, 97–108.

    Article  PubMed  Google Scholar 

  • Steinrnetz, J.E., Lavond, D.G., & Thompson, R.F. (1989). Classical conditioning in rabbits using pontine nucleus stimulation as a conditioned stimulus and inferior olive stimulation as an unconditioned stimulus. Synapse, 3, 225–233.

    Google Scholar 

  • Steinmetz, J.E., Logan, C.G., Rosen, D.J., Thompson, J.K., Lavond, D.G., & Thompson, R.F. (1987). Initial localization of the acoustic conditioned stimulus projection system to the cerebellum essential for classical eyelid conditioning. Proceedings of the National Academy of Sciences, (U.S.A.), 84, 3531–3535.

    Google Scholar 

  • Steinmetz, J.E., Rosen, D.J., Chapman, P.F., Lavond, D.G., & Thompson, R.F. (1986). Classical conditioning of the rabbit eyelid response with a mossy-fiber stimulation CS:I. Pontine nuclei and middle cerebellar peduncle stimulation. Behavioral Neuroscience, 100, 878–887.

    Article  PubMed  Google Scholar 

  • Tracy, J.A., Thompson, J.K., Krupa, D.J., & Thompson, R.F. (1998). Evidence of plasticity in the pontocerebellar conditioned stimulus pathway during classical conditioning of the eyeblink response in the rabbit. Behavioral Neuroscience, 112, 267–285.

    Article  PubMed  Google Scholar 

  • Welsh, J.P., & Harvey, J.A. (1991). Pavlovian conditioning in the rabbit during inactivation of the interpositus nucleus. Journal of Physiology, (London), 444, 459–480.

    Google Scholar 

  • Woodruff-Pak, D.S., Lavond, D.G., Logan, C.G., Steinmetz, J.E., & Thompson, R.F. (1993). Cerebellar cortical lesions and reacquisition in classical conditioning of the nictitating membrane response in rabbits. Brain Research, 608, 67–77.

    Article  PubMed  Google Scholar 

  • Yeo, C.H., & Hardiman, M.J. (1992). Cerebellar cortex and eyeblink conditioning: a reexamination. Experimental Brain Research, 88, 623–638.

    Article  Google Scholar 

  • Yeo, C.H., Hardiman, M.J., & Glickstein, M. (1984). Discrete lesions of the cerebellar cortex abolish the classically conditioned nictitating membrane response of the rabbit. Behavioural Brain Research, 13, 261–266.

    Article  PubMed  Google Scholar 

  • Yeo, C.H., Hardiman, M.J., & Glickstein, M. (1985). Classical conditioning of the nictitating membrane response of the rabbit. III. Connections of cerebellar lobule HVI. Experimental Brain Research, 60, 114–126.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Nores, W.L., Medina, J.F., Steele, P.M., Mauk, M.D. (2002). Relative Contributions of the Cerebellar Cortex and Cerebellar Nucleus to Eyelid Conditioning. In: Woodruff-Pak, D.S., Steinmetz, J.E. (eds) Eyeblink Classical Conditioning: Volume 2. Springer, Boston, MA. https://doi.org/10.1007/0-306-46897-2_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-46897-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7863-1

  • Online ISBN: 978-0-306-46897-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics