Skip to main content

On viscous fluid flow near a moving crack tip

  • Chapter
Continuum Thermomechanics

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 76))

  • 650 Accesses

Abstract

We consider a crack partially filled with a fluid. We show that the presence of a lag avoids the appearance of pressure and velocity singularities. For the static equilibrium, we recall the previous result on the Capillary Stress Intensity Factor which provides a purely mechanical explanation of the Rehbinder effect, according to which the toughness of the material can be lowered by humidity. For the steady state propagation of a crack due to viscous fluid flow, we set the coupled system of non-linear equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, T.; Mura, T.; Keer, L.M.; Growth rate of a renny-shaped crack in hydraulic fracturing of rock; In: J. Geophys. Res., p.5325; 81, no 29.

    Google Scholar 

  2. Advani, S.; Lee, T.; Dean, R.; Pak, C.; Avasthi, J.; Similarity solution of a semi-infinite fluid-driven fracture in a linear elastic solid; In: Int. J. Numer. Anal. Meth. Geomech, p. 229–240; 21.

    Google Scholar 

  3. A.V. Baluaeva, A.V.; Zazovskii, A.F.; Elastic-hydrodynamic problem of inflow of fluid in a crack in a porous medium; In: Izv. AN SSSR. Mekhanika Tverdogo Tela, pp. 157–166; 20, no 5.

    Google Scholar 

  4. Bui, H.D.; Parnès, R.; A reexamination of the pressure at the tip of a fluid-filled crack; In: Int. J Engng. Sci., p. 1215–1220; 20, no 11.

    Google Scholar 

  5. Bui, H.D.; Interaction between the Griffith crack and a fluid: theory of Rehbinder’s effect; In: FRACTURE: A Topical Encyclopedia of Current Knowledgel; Ed. Cherepanov, G.P.; p. 99–105; Chap. 6.

    Google Scholar 

  6. Conca, C.; Planchard, J.; Thomas, B.; Vaninathan, M.; Problèmes mathèmatiques en couplage fluide-structure; Collection des Etudes & Recherches; 85, Eyrolles, Paris, 1994.

    Google Scholar 

  7. DeGennes, P.G.; Wetting: statics and dynamics. In: Reviews of Modern Physics, p. 827; 57,3, I.

    Google Scholar 

  8. Durbin, P.A.; Stokes flow near a moving contact line with yield-stress boundary condition; In: Quart. J. Mech. & Math., p. 99–113; 42.

    Google Scholar 

  9. Dussan, E.B.; Davis, S.H.; On the motion of a fluid-fluid interface along a solid surface; In: J. Fluid. Mech., p. 71; 65,I.

    Google Scholar 

  10. Garash, D.; Detournay, E.; Similarity solution of a semi-infinite fluid-driven fracture in a linear elastic solid; Private Comm. (to appear).

    Google Scholar 

  11. Michalske, T.; Bunker, B.; La fracture du verre; In: Pour la Science, p.52–59; Février 1988.

    Google Scholar 

  12. Moffatt, H.K.; Viscous and resistive eddies near a sharp corner; In: J. Fluid. Mech., 1–18; 18.

    Google Scholar 

  13. Monla, M.; Sur la détermination de la forme d’une bulle en ascension dans un liquide visqueux; Thèse de l’Ecole Centrale de Lyon; no 90-08.

    Google Scholar 

  14. Rehbinder, P.; Lichtman, V.; Effect of surface active media on strain and rupture of solid; In: Proc. 2nd Int. Cong. Surf. Act., p. 563; 3.

    Google Scholar 

  15. Seppecher, P.; Etudes des conditions aux limites en théorie du second gradient: cas de la capillarité; In: Comptes Rendus Acad. Sci. Paris, p. 497–502; II 309.

    Google Scholar 

  16. Van Dam, C.J.; De Pater, C.J.; Romijn, R.; Reopening of dynamic fractures in laboratory experiments; In: Cong. Int. Mech. Rocks, Paris August 1999, p. 792–794; II.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bui, H.D., Guyon, C., Thomas, B. (2000). On viscous fluid flow near a moving crack tip. In: Maugin, G.A., Drouot, R., Sidoroff, F. (eds) Continuum Thermomechanics. Solid Mechanics and Its Applications, vol 76. Springer, Dordrecht. https://doi.org/10.1007/0-306-46946-4_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-46946-4_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6407-8

  • Online ISBN: 978-0-306-46946-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics