Skip to main content

Dielectric Description of Semiconductors: From Maxwell— to Semiconductor Bloch—Equations

  • Chapter
Ultrafast Dynamics of Quantum Systems

Part of the book series: NATO Science Series: B: ((NSSB,volume 372))

Abstract

A tutorial on the dielectric description of matter is presented with particular attention to semiconductor optics. The first part focuses on general concepts like the construction of macroscopic fields, linear and quadratic response, and simple models how to describe the reaction of matter with respect to the electromagnetic field. Beginning with the two-level approximation of an atom, the second part will lead us to the semiconductor Bloch equations which are the today’s standard model of semiconductor optics in the short time regime. Together with the Maxwell equations these form a closed set of dynamical equations for the electromagnetic field, polarization, and electron/hole population of a semiconductor upon optical excitations. Some selected applications and problems are added.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. D. Landau and E. M. Lifschitz, Electrodynamics of Continuous Media, Pergamon Press (1984).

    Google Scholar 

  2. F. C. Wooten, Optical Properties of Solids, Academic Press (1972).

    Google Scholar 

  3. C.F. Klingshirn, Semiconductor Optics, Springer (1995).

    Google Scholar 

  4. Spectroscopy and Dynamics of Collective Excitations in Solids, edited by B. Di Bartolo, NATO ASI Series B: Physics Vol. 356, Plenum Press (1997).

    Google Scholar 

  5. Ultra fast Dynamics of Quantum Systems: Physical Processes and Spectroscopic Techniques, edited by B. Di Bartolo, Plenum Press (This book).

    Google Scholar 

  6. L.V. Keldysh, D.A. Kirshnitz, and A.A. Maradudin eds., The Dielectric Function of Condensed Systems, North Holland (1989).

    Google Scholar 

  7. Yu, Il’inskij and L.V. Keldysh, Electromagnetic Response of Material Media, Plenum Press (1994).

    Google Scholar 

  8. P. Grosse, Propagation of Electromagnetic Waves and Magnetooptics, in Theoretical Aspects and Developments in Magneto Optics, edited by J. Devreese, Plenum Press (1980).

    Google Scholar 

  9. F. Forstmann and R.R. Gerhards, Metal Optics Near the Plasma Frequency, Springer Tracts in Modern Physics, Vol. 109, Springer (1986).

    Google Scholar 

  10. R. von Baltz, Plasmons and Surface Plasmons in Bulk Metals, Metallic Clusters, and Metallic Heterostructures, in [4].

    Google Scholar 

  11. A. Stahl and I. Balslev, Electrodynamics of the Semiconductor Band Edge, Springer Tracts in Modern Physics, Vol. 110, Springer (1987).

    Google Scholar 

  12. B. Di Bartolo, Propagation of waves in linear and nonlinear media, in [5].

    Google Scholar 

  13. R.W. Boyd, Nonlinear Optics, Academic Press (1992).

    Google Scholar 

  14. H. Haug and S.W. Koch, Quantum Theory of the Optical and Electronic Processes of Semiconductors, World Scientific (1994).

    Google Scholar 

  15. R. Zimmermann, Theoretical Description of Collective Excitations: Bloch equations and Relaxation Mechanisms, in [4].

    Google Scholar 

  16. R.P. Feynman, R.B. Leighton, and M. Sands, The Feynman Lectures on Physics, Addison-Wesley (1966).

    Google Scholar 

  17. L. Allen and J.H. Eberly, Optical Resonance and Two-Level Atoms, Wiley (1975).

    Google Scholar 

  18. H.M. Nussenzweig, Causality and Dispersion Relations, Academic Press (1972).

    Google Scholar 

  19. W. Stößel, Fourier Optik. Eine Einführung, Springer (1993).

    Google Scholar 

  20. P.C. Martin, Phys. Rev. 161, 143 (1967).

    Article  ADS  Google Scholar 

  21. W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterly, Numerical Recipes, Cambridge University Press (1986).

    Google Scholar 

  22. S.R. De Groot and P. Mazur, Non-Equilibrium Thermodynamics, North Holland (1962).

    Google Scholar 

  23. W. Ruppel, R. von Baltz, and P. Würfel, Ferroelectrics 43, 109 (1981).

    Google Scholar 

  24. R. von Baltz, Ferroelectrics, 35, 131 (1981).

    Google Scholar 

  25. A.M. Glass, D. von der Linde, and T.J. Negran, Appl. Phys. Lett. 25, 233 (1974).

    Article  ADS  Google Scholar 

  26. F.S. Chen, Jour. Appl. Phys. 40, 3389 (1969).

    Article  ADS  Google Scholar 

  27. D.H. Auston, A.M. Glass, and A.A. Ballman, Phys. Rev. Lett. 28, 897 (1972).

    Article  ADS  Google Scholar 

  28. S.I. Karabekian and S.G. Odulov, phys. stat. sol. (b) 169, 529 (1992).

    Article  ADS  Google Scholar 

  29. A.F. Gibson, C.B. Hatch, M.F. Kimmitt, S. Kothari, and S. Serafetinidis, J. Phys. C10, 905 (1977).

    ADS  Google Scholar 

  30. D. Hornung, R. von Baltz, and U. Rössler, Sol. State Comm. 48, 225 (1983).

    Article  ADS  Google Scholar 

  31. E.I. Blount, in Solid State Physics, edited by F. Seitz and D. Turnbull, Academic Press (1962), Vol 13.

    Google Scholar 

  32. C.F. Hart and D. Emin, Phys. Rev. B43, 4521 (1991) and references cited therein.

    ADS  Google Scholar 

  33. C. Aversa and J.E. Sipe, Phys. Rev. B52, 14 636 (1995).

    Google Scholar 

  34. R. Resta, Rev. Mod. Phys. 66, 899 (1994).

    Article  ADS  Google Scholar 

  35. H. Schneider et al. Superlattices and Microstructures, 20, 1 (1996).

    Article  MATH  Google Scholar 

  36. L.P. Faucheux, L.S. Bourdieu, P.D. Kaplan, and A.J. Libchaber, Phys. Rev. Lett. 74, 1504 (1995).

    Article  ADS  Google Scholar 

  37. P. Reimann, M. Grifoni, and P. Hanggi, Phys. Rev. Lett. 79, 10 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. B.U. Felderhof and R.B. Jones Physica, A202, 119 (1994).

    ADS  Google Scholar 

  39. E.L. Hahn, Phys. Rev. 80, 580 (1950).

    Article  ADS  MATH  Google Scholar 

  40. R.J. Elliott, in Polarons and Excitons, edited by C.G. Kuper and G.D. Whitfield, Oliver and Boyd (1969).

    Google Scholar 

  41. Ch. Tanguy, Phys. Rev. Lett. 75, 22 (1995).

    Article  Google Scholar 

  42. C. Klingshirn, Ultrafast Spectroscopy of Semiconductors, in [5].

    Google Scholar 

  43. J. Hvam, Spectroscopy of Coherent Interactions between Light and Matter, in [5].

    Google Scholar 

  44. V.M. Axt, G. Bartels, and A. Stahl, Phys. Rev. Lett. 76, 2543 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Baltz, R. (2002). Dielectric Description of Semiconductors: From Maxwell— to Semiconductor Bloch—Equations. In: Di Bartolo, B., Gambarota, G. (eds) Ultrafast Dynamics of Quantum Systems. NATO Science Series: B:, vol 372. Springer, Boston, MA. https://doi.org/10.1007/0-306-47080-2_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-47080-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45929-0

  • Online ISBN: 978-0-306-47080-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics