Skip to main content

Part of the book series: The International Series in Engineering and Computer Science ((SECS,volume 655))

  • 229 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. A. W. Vance, “Fully integrated Radio Paging Receiver,” IEE Proceedings, vol. 146, pt F, no. 1, pp. 2–6, February 1982.

    Google Scholar 

  2. A. Rofougaran, J. Y.-C. Chang, M. Rofougaran, A. A. Abidi, “A 1 GHz CMOS RF Front-End IC for a Direct-Conversion Wireless Receiver,” IEEE J. Solid-State Circuits, vol. 31, pp. 880–889, July 1996.

    Google Scholar 

  3. K. Anvari, M. Kaube, B. Hriskevich, “Performance of a Direct Conversion Receiver with π/4-DQPSK Modulated Signal,” in Proceedings of the IEEE Vehicular Technology Conf., pp. 822–827, May 1991.

    Google Scholar 

  4. S. Sampei, K. Feher, “Adaptive DC-Offset Compensation Algorithm for Burst Mode Operated Direct Conversion Receivers,” in Proceedings of the IEEE Vehicular Technology Conf., pp. 93–96, May 1992.

    Google Scholar 

  5. J. K. Cavers, M. W. Liao, “Adaptive Compensation for Imbalance and Offset Losses in Direct Conversion Transceivers,” IEEE Trans. on Vehicular Technology, vol. 42, pp. 581–588, November 1993.

    Google Scholar 

  6. J. F. Wilson, R. Youell, T. H. Richards, G. Luff, R. Pilaski, “A Single-Chip VHF and UHF Receiver for Radio Paging,” IEEE J. Solid-State Circuits, vol. 26, pp. 1944–1950, December 1991.

    Google Scholar 

  7. B. Razavi, “A 2.4-GHz CMOS Receiver for IEEE 802.11 Wireless LAN’s,” IEEE J. Solid-State Circuits, vol. 34, pp. 1382–1385, October 1999.

    Google Scholar 

  8. A. Bateman, D. M. Raines, “Direct Conversion Tranceiver Design for Compact Low-Cost Portable Mobile Radio Terminals,” in Proceedings of the IEEE Vehicular Technology Conf., pp. 57–62, May 1989.

    Google Scholar 

  9. U. Bolliger, W. Vollenweider, “Some Experiments on Direct-Conversion Receivers,” in Proc. of the IEE 5th International Conference on Radio Receivers and Associated Systems, pp. 40–44, July 1990.

    Google Scholar 

  10. G. Schultes, A. L. Scholtz, E. Bonek, P. Veith, “A New Incoherent Direct Conversion Receiver,” in Proceedings of the IEEE Vehicular Technology Conf, pp. 668–674, May 1990.

    Google Scholar 

  11. B. Razavi, “Design Considerations for Direct-Conversion Receivers,” IEEE Trans. on Circuits and Syst.—II: Analog and Digital Signal Processing, vol. 44, pp. 428–435, June 1997.

    Google Scholar 

  12. C. D. Hull, J. L. Tham, R. R. Chu, “A Direct-Conversion Receiver for 900 MHz (ISM Band) Spread-Spectrum Digital Cordless Telephone,” IEEE J. Solid-State Circuits, vol. 31, pp. 1955–1963, December 1996.

    Google Scholar 

  13. P. S. Mclntosh, “The Design and Development of a Spread Spectrum Digital Cordless Telephone for the Consumer Market,” in Proceedings of the Virginia Tech’s Fourth Symposium on Wireless Personal Communications, pp. 97–105, June 1994.

    Google Scholar 

  14. G. Schultes, E. Bonek, A. L. Scholtz, P. Kreuzgruber, “Low-Cost Direct Conversion Receiver Structures for TDMA Mobile Communications,” in Sixth International Conf. Mobile Radio and Personal Communications, pp. 143–150, 1991.

    Google Scholar 

  15. A. Rofougaran, G. Chang, J.J. Rael, J. Y.-C. Chang, M. Rofougaran, P. J. Chang, M. Djafari, J. Min, E. W. Roth, A. A. Abidi, H. Samueli, “A Single-Chip 900-MHz Spread-Spectrum Wireless Transceiver 1-μm in CMOS—Part II: Receiver Design,” IEEE J. Solid-State Circuits, vol. 33, pp. 535–547, April 1998.

    Google Scholar 

  16. J. Jussila, A. Pärssinen, K. Halonen, “An Analog Baseband Circuitry for a WCDMA Direct Conversion Receiver”, in Proceedings of the European Solid-State Circuits Conf., pp. 166–169, September 1999.

    Google Scholar 

  17. T. Cho, E. Dukatz, M. Mack, D. MacNally, M. Marringa, S. Mehta, C. Nilson, L. Plouvier, S. Rabii, “A Single-Chip CMOS Direct-Conversion Transceiver for 900 MHz Spread-Spectrum Digital Cordless Phones,” in ISSCC Digest of Technical Papers, pp. 228–229, February 1999.

    Google Scholar 

  18. B. Lindquist, M. Isberg, P. W. Dent, “A New Approach to Eliminate the DC Offset in a TDMA Direct Conversion Receiver,” in Proceedings of the IEEE Vehicular Technology Conf., pp. 754–757, May 1993.

    Google Scholar 

  19. A. Bateman, D.M. Haines, R. J. Wilkinson, “Linear Transceiver Architectures,” in Proceedings of the IEEE Vehicular Technology Conf., pp. 478–484, June 1988.

    Google Scholar 

  20. D. Haspeslagh, J. Ceuterick, L. Kiss, J. Weinin, A. Vanwelsenaers, C. Enel-Rehel, “BBTRX: A Baseband Transceiver for a Zero IF GSM Hand Portable Station,” in Proceedings of the Custom Integrated Circuits Conf., pp. 10.7.1–10.7.4, May 1992.

    Google Scholar 

  21. A. A. Abidi, “Direct-Conversion Radio Tranceivers for Digital Communications,” IEEE J. Solid-State Circuits, vol. 30, pp. 1399–1410, December 1995.

    Google Scholar 

  22. H. Yoshida, H. Tsurumi, Y. Suzuki, “DC Offset Canceller in a Direct Conversion Receiver for QPSK Signal Reception,” in Proceedings of the IEEE Int. Symp. on Personal, Indoor and Mobile Radio Communications, vol. 3, pp. 1314–1318, September 1998.

    Google Scholar 

  23. V. Comino, D. Schulman, S. J. Walker, S. Kasturia, M. Prise, “A Baseband Integrated Circuit for Homodyne Cordless Phones,” in Proceedings of the Custom Integrated Circuits Conf., pp. 423–426, May 1998.

    Google Scholar 

  24. B. Wang, H. M. Kwon, J. Mittel, “Simple DC Removers for Digital FM Direct-Conversion Receiver,” in Proceedings of the IEEE Vehicular Technology Conf., pp. 1222–1226, May 1999.

    Google Scholar 

  25. J. H. Mikkelsen, T. E. Kolding, T. Larsen, T. Klingenbrunn, K. I. Pedersen, P. Morgensen, “Feasibility Study of DC Offset Filtering for UTRA-FDD/WCDMA Direct-Conversion Receiver,” in Proceedings of the 17th Norchip Conf., pp. 34–39, November 1999.

    Google Scholar 

  26. K. Takahashi, M. Mimura, M. Hasegawa, M. Makimoto, K. Yokozaki, “A Direct Conversion Receiver Utilizing a Novel FSK Demodulator and Low-Power-Consumption Quadrature Mixer,” in Proceedings of the IEEE Vehicular Technology Conf., pp. 910–915, May 1992.

    Google Scholar 

  27. Z. Chen, J. Lau, “Circuit Requirements of a Direct Conversion Paging Receiver,” IEEE Trans. on Circuits and Syst.—II: Analog and Digital Signal Processing, vol. 46, pp. 802–807, June 1999.

    Google Scholar 

  28. P. Estabrook, B. B. Lusignan, “The Design of a Mobile Radio Receiver Using a Direct Conversion Architecture,” in Proceedings of the IEEE Vehicular Technology Conf., pp. 63–72, May 1989.

    Google Scholar 

  29. T. Yamaji, H. Tanimoto, H. Kokatsu, “An I/Q Active Balanced Harmonic Mixer with IM2 Cancelers and a 45° Phase Shifter,” IEEE J. Solid-State Circuits, vol. 33, pp. 2240–2246, December 1998.

    Google Scholar 

  30. N. C. Hamilton, “Aspect of Direct Conversion Receiver Design,” in Proceedings of the Fifth International Conference on HF Radio Systems and Techniques, pp. 299–303, 1991.

    Google Scholar 

  31. C. Takahashi, R. Fujimoto, S. Arai, T. Itakura, T. Ueno, H. Tsurumi, H. Tanimoto, S. Watanabe, K. Hirakawa, “A 1.9 GHz Si Direct Conversion Receiver IC for QPSK Modulation Systems,” in ISSCC Digest of Technical Papers, pp. 138–139, February 1995.

    Google Scholar 

  32. C. Takahashi, R. Fujimoto, S. Arai, T. Itakura, T. Ueno, H. Tsurumi, H. Tanimoto, S. Watanabe, K. Hirakawa, “A 1.9 GHz Si Direct Conversion Receiver IC for QPSK Modulation Systems,” IEICE Trans. Electron., vol. E79-C, pp. 644–649, May 1996.

    Google Scholar 

  33. J. M. Moniz, B. Maoz, “Improving the Dynamic Range of the MMIC Gilbert Cell Mixers for Homodyne Receivers,” in Proceedings of the IEEE Microwave and Millimeter-Wave Integrated Circuits Symposium, pp. 103–106, June 1994.

    Google Scholar 

  34. H. Tsurumi, T. Maeda, “Design Study on a Direct Conversion Receiver Front-End for 280 MHz, 900 MHz, and 2.6 GHz Band Radio Communication Systems,” in Proceedings of the IEEE Vehicular Technology Conf., pp. 457–462, May 1991.

    Google Scholar 

  35. C. Muschallik, “System Considerations on SCPC for Digital Satellite Receivers with Direct Conversion,” IEEE Trans. on Consumer Electronics, vol. 45, pp. 956–964, August 1999.

    Google Scholar 

  36. J. Hyyryläinen, L. Bogod, S. Kangasmaa, H.-O. Scheck, T. Ylämurto, “Six-Port Direct Conversion Receiver,” in Proceedings of the European Microwave Conference, pp. 341–346, October 1997.

    Google Scholar 

  37. S. Laursen, “Second Order Distortion in CMOS Direct Conversion Receivers for GSM,” in Proceedings of the European Solid-State Circuits Conf., pp. 342–345, September 1999.

    Google Scholar 

  38. A. Pärssinen, J. Jussila, J. Ryynänen, L. Sumanen, K. Halonen, “A Wide-Band Direct Conversion Receiver for WCDMA Applications,” in ISSCC Digest of Technical Papers, pp. 220–221, February 1999.

    Google Scholar 

  39. A. Pärssinen, J. Jussila, J. Ryynänen, L. Sumanen, K. Kivekäs, K. Halonen, “A Wide-Band Direct Conversion Receiver With On-Chip A/D Converters,” in Symposium on VLSI Circuits Digest of Technical Papers, pp. 32–33, June 2000.

    Google Scholar 

  40. K. L. Fong, “Dual-Band High-Linearity Variable-Gain Low-Noise Amplifiers for Wireless Applications,” in ISSCC Digest of Technical Papers, pp. 224–225, February 1999.

    Google Scholar 

  41. Q. Huang, P. Orsatti, F. Piazza, “Broadband, 0.25μm CMOS LNAs with Sub-2dB NF for GSM Applications,” in Proceedings of the Custom Integrated Circuits Conf., pp. 67–70, May 1998.

    Google Scholar 

  42. B. A. Floyd, J. Mehta, C. Gamero, K. K. O, “A 900-MHz, 0.8-μm CMOS Low Noise Amplifier with 1.2-dB Noise Figure,” in Proceedings of the Custom Integrated Circuits Conf., pp. 661–664, May 1999.

    Google Scholar 

  43. G. Gramegna, A. Magazzù, C. Sclafani, M. Paparo, “Ultra-Wide Dynamic Range 1.75dB Noise-Figure, 900MHz CMOS LNA,” in ISSCC Digest of Technical Papers, pp. 380–381, February 2000.

    Google Scholar 

  44. R. G. Meyer, W. D. Mack, “A 1-GHz BiCMOS RF Front-End IC,” IEEE J. Solid-State Circuits, vol. 29, pp. 350–355, March 1994.

    Google Scholar 

  45. M. Steyaert, M. Borremans, J. Janssens, B. D. Muer, N. Itoh, J. Craninckx, J. Crols, E. Morifuji, H. S. Momose, W. Sansen, “A Single-Chip CMOS Tranceiver for DCS-1800 Wireless Communications,” in ISSCC Digest of Technical Papers, pp. 48–49, February 1998.

    Google Scholar 

  46. J. Janssens, J. Crols, M. Steyaert, “A 10 mW Inductorless, Broadband CMOS Low Noise Amplifier for 900 MHz Wireless Communications,” in Proceedings of the Custom Integrated Circuits Conf., pp. 75–78, May 1998.

    Google Scholar 

  47. Y. J. Shin, K. Bult, “An Inductorless 900MHz RF Low-Noise Amplifier in 0.9μm CMOS,” in Proceedings of the Custom Integrated Circuits Conf., pp. 513–516, May 1997.

    Google Scholar 

  48. C.-Y. Wu, S.-Y. Hsiao, “The Design of a 3-V 900-MHz CMOS Bandpass Amplifier,” IEEE J. Solid-State Circuits, vol. 32, pp. 159–168, February 1997.

    Google Scholar 

  49. A. N. Karanicolas, “A 2.7-V 900-MHz CMOS LNA and Mixer,” IEEE J. Solid-State Circuits, vol. 31, pp. 1939–1944, December 1996.

    Google Scholar 

  50. B. Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentice-Hall, 1998.

    Google Scholar 

  51. T. Melly, A.-S. Porret, C. C. Enz, M Kayal, “A 1.3V Low-Power 430 MHz Front-End Using a Standard Digital CMOS Process,” in Proceedings of the Custom Integrated Circuits Conf., pp. 503–506, May 1998.

    Google Scholar 

  52. J. R. Long, M. A. Copeland, “A 1.9 GHz Low-Voltage Silicon Bipolar Receiver Front-End for Wireless Personal Communications Systems,” IEEE J. Solid-State Circuits, vol. 30, pp. 1438–1448, December 1995.

    Google Scholar 

  53. D. K. Shaeffer, T. H. Lee, “A 1.5-V, 1.5-GHz CMOS Low Noise Amplifier,” IEEE J. Solid-State Circuits, vol. 32, pp. 745–759, May 1997.

    Google Scholar 

  54. A. R. Shahani, D. K. Shaeffer, T. H. Lee, “A 12-mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver,” IEEE J. Solid-State Circuits, vol. 32, pp. 2061–2070, December 1997.

    Google Scholar 

  55. J.-J. Zhou, D. J. Allstot, “A Fully Integrated CMOS 900MHz LNA Utilizing Monolithic Transformers,” in ISSCC Digest of Technical Papers, pp. 132–133, February 1998.

    Google Scholar 

  56. R. Mittra, C. Gordon, “Electrical Design of Packaging Systems,” in Physical Architecture of VLSI Systems, R. J. Hanneman, A. D. Kraus, M. Pecht, Ed. New York: John Wiley & Sons, 1984; Ch. 8, pp. 461–539.

    Google Scholar 

  57. J. Sevenhans, A. Vanwelsenaers, J. Weinin, J. Baro, “An Integrated Si Bipolar RF Transceiver for a Zero IF 900 MHz GSM Digital Mobile Radio Frontend of a Hand Portable Phone,” in Proceedings of the Custom Integrated Circuits Conf., pp. 7.7.1–7.7.4, May 1991.

    Google Scholar 

  58. H. Wang, M. Banu, “3V, 28mW Si-Bipolar Front-End IC for 900 MHz Homodyne Wireless Receivers,” Electronics Letters, vol. 31, pp. 265–266, February 1995.

    Google Scholar 

  59. K. Itoh, M. Shimozawa, N. Suematsu, O. Ishida, “Even Harmonic Type Direct Conversion Receiver ICs for Mobile Handsets: Design Challenges And Solutions,” in Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium, pp. 53–56, June 1999.

    Google Scholar 

  60. B.-S. Song, “CMOS RF Circuits for Data Communications Applications,” IEEE J. Solid-State Circuits, vol. 21, pp. 310–317, April 1986.

    Google Scholar 

  61. J. Crols, M. S. J. Steyaert, “A 1.5 GHz Highly Linear CMOS Downconversion Mixer,” IEEE J. Solid-State Circuits, vol. 30, pp. 736–742, July 1995.

    Google Scholar 

  62. J. Janssens, M. Steyaert, T. Ohguro, “A 0.25 μm CMOS I/Q-Channel Downconversion Mixer with Active Coil for DCS-1800 Applications,” in Proceedings of the European Solid-State Circuits Conf., pp. 56–59, September 1998.

    Google Scholar 

  63. K. L. Fong, R. G. Meyer, “Monolithic RF Active Mixer Design,” IEEE Trans. on Circuits and Syst.—II: Analog and Digital Signal Processing, vol. 46, pp. 231–239, March 1999.

    Google Scholar 

  64. J. C. Rudell, J.-J. Ou, T. B. Cho, G. Chien, F. Brianti, J. A. Weldon, P. R. Gray, “A 1.9-GHz Wide-Band IF Double Conversion CMOS Receiver for Cordless Telephone Applications,” IEEE J. Solid-State Circuits, vol. 32, pp. 2071–2088, December 1997.

    Google Scholar 

  65. K. Voudouris, J. M. Noras, “Effects of Amplitude, Phase, and Frequency Imperfections on the Performance of a Direct Conversion Receiver (DCR) for Personal Communication System,” IEEE Microwave and Guided Wave Letters, vol. 3, pp. 313–315, September 1993.

    Google Scholar 

  66. J. Crols, M. Steyaert, CMOS Wireless Transceiver Design, Boston, Dordrecht, London: Kluwer, 1997.

    Google Scholar 

  67. R. K. Loper, “A Tri-Phase Direct Conversion Receiver,” in Proceedings of the IEEE Military Communications Conf., pp. 1228–1232, October 1990.

    Google Scholar 

  68. T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge, UK: Cambridge University Press, 1998.

    Google Scholar 

  69. A. W. Buchwald, K. W. Martin, “High-Speed Voltage-Controlled Oscillator with Quadrature Outputs,” Electronics Letters, vol. 27, pp. 309–310, February 1991.

    Google Scholar 

  70. F. L. Martin, “A BiCMOS 50-MHz Voltage-Controlled Oscillator with Quadrature Outputs,” in Proceedings of the Custom Integrated Circuits Conf., pp. 27.4.1–27.4.4, May 1993.

    Google Scholar 

  71. T. C. Weigandt, B. Kim, P. R. Gray, “Analysis of Timing Jitter in CMOS Ring Oscillators,” in Proceedings of the IEEE International Symposium on Circuits and Systems, vol. 4, pp. 27–30, June 1994.

    Google Scholar 

  72. B. Razavi, “A Study of Phase Noise in CMOS Oscillators,” IEEE J. Solid-State Circuits, vol. 31, pp. 331–343, March 1996.

    Google Scholar 

  73. J. A. McNeill, “Jitter in Ring Oscillators,” IEEE J. Solid-State Circuits, vol. 32, pp. 870–879, June 1997.

    Google Scholar 

  74. A. Hajimiri, T. H. Lee, “A General Theory of Phase Noise in Electrical Oscillators,” IEEE J. Solid-State Circuits, vol. 33, pp. 179–194, February 1998.

    Google Scholar 

  75. F. Herzel, B. Razavi, “A Study of Oscillator Jitter Due to Supply and Substrate Noise,” IEEE Trans. on Circuits and Syst.—II: Analog and Digital Signal Processing, vol. 46, pp. 56–62, January 1999.

    Google Scholar 

  76. A. Hajimiri, S. Limotyrakis, T. H. Lee, “Jitter and Phase Noise in Ring Oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 790–804, June 1999.

    Google Scholar 

  77. S. L. J. Gierkink, E. A. M. Klumperink, A. P. van der Wel, G. Hoogzaad, E. A. J. M. van Tuijl, B. Nauta, “Intrinsic 1/f Device Noise Reduction and Its Effect on Phase Noise in CMOS Ring Oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 1022–1025, July 1999.

    Google Scholar 

  78. A. Rofougaran, G. Chang, J.J. Raerl, J. Y.-C. Chang, M. Rofougaran, P. J. Chang, M. Djafari, M.-K. Ku, E. W. Roth, A. A. Abidi, H. Samueli, “A Single-Chip 900-MHz Spread-Spectrum Wireless Transceiver in 1-μm CMOS—Part I: Architecture and Transmitter Design,” IEEE J. Solid-State Circuits, vol. 33, pp. 515–534, April 1998.

    Google Scholar 

  79. M. Thamsirianunt, T. A. Kwasniewski, “CMOS VCO’s for PLL Frequency Synthesis in GHz Digital Mobile Radio Communications,” IEEE J. Solid-State Circuits, vol. 32, pp. 1511–1524, October 1997.

    Google Scholar 

  80. C. J. M. Verhoeven, “A High-Frequency Electronically Tunable Quadrature Oscillator,” IEEE J. Solid-State Circuits, vol. 27, pp. 1097–1100, July 1992.

    Google Scholar 

  81. R. Duncan, K. Martin, A. Sedra, “A 1 GHz Quadrature Sinusoidal Oscillator,” in Proceedings of the Custom Integrated Circuits Conf., pp. 91–94, May 1995.

    Google Scholar 

  82. A. Rofougaran, J. Rael, M. Rofougaran, A. Abidi, “A 900 MHz CMOS LC-Oscillator with Quadrature Outputs,” in ISSCC Digest of Technical Papers, pp. 392–393, February 1996.

    Google Scholar 

  83. J. J. Kim, B. Kim, “A Low-Phase-Noise CMOS LC Oscillator with a Ring Structure,” in ISSCC Digest of Technical Papers, pp. 430–431, February 2000.

    Google Scholar 

  84. M. D. McDonald, “A 2.5 GHz BiCMOS Image-Reject Front-End,” in ISSCC Digest of Technical Papers, pp. 144–145, February 1993.

    Google Scholar 

  85. J. Sevenhans, D. Haspeslagh, A. Delarbre, L. Kiss, Z. Chang, J. F. Kukielka, “An Analog Radio Front-End Chip Set for a 1.9 GHz Mobile Radio Telephone Application,” in ISSCC Digest of Technical Papers, pp. 44–45, February 1994.

    Google Scholar 

  86. M. Steyaert, R. Roovers, “A 1-GHz Single-Chip Quadrature Modulator,” IEEE J. Solid-State Circuits, vol. 27, pp. 1194–1197, August 1992.

    Google Scholar 

  87. I. A. Koullias, J. H. Havens, I. G. Post, P. E. Bronner, “A 900 MHz Transceiver Chip Set for Dual-Mode Cellular Mobile Terminals,” in ISSCC Digest of Technical Papers, pp. 140–141, February 1993.

    Google Scholar 

  88. M. J. Gingell, “Single Sideband Modulation Using Sequence Asymmetric Polyphase Networks,” Electrical Communication, vol. 48, pp. 21–25, 1973.

    Google Scholar 

  89. J. Crols, M. Steyaert, “A Fully Integrated 900 MHz CMOS Double Quadrature Downconverter,” in ISSCC Digest of Technical Papers, pp. 136–137, February 1995.

    Google Scholar 

  90. F. Behbahani, Y. Kishigami, J. Leete, A. A. Abidi, “CMOS 10 MHz-IF Downconverter with On-Chip Broadband Circuit for Large Image-Suppression,” in Symposium on VLSI Circuits Digest of Technical Papers, pp. 83–86, June 1999.

    Google Scholar 

  91. J. Crols, M. S. J. Steyaert, “A Single-Chip 900 MHz CMOS Receiver Front-End with a High Performance Low-IF Topology,” IEEE J. Solid-State Circuits, vol. 30, pp. 1483–1492, December 1995.

    Google Scholar 

  92. J. Crols, M. Steyaert, “An analog Integrated Polyphase Filter for a High Performance Low-IF Receiver,” in Symposium on VLSI Circuits Digest of Technical Papers, pp. 87–88, June 1995.

    Google Scholar 

  93. S. H. Galal, H. F. Ragaie, M. S. Tawfik, “RF Sequence Asymmetric Polyphase Networks for RF Integrated Transceivers,” IEEE Trans. on Circuits and Syst.—II: Analog and Digital Signal Processing, vol. 47, pp. 18–27, January 2000.

    Google Scholar 

  94. A. Pärssinen, J. Jussila, J. Ryynänen, L. Sumanen, K. A. I. Halonen, “A 2-GHz Wide-Band Direct Conversion Receiver for WCDMA Applications,” IEEE J. Solid-State Circuits, vol. 34, pp. 1893–1903, December 1999.

    Google Scholar 

  95. F. Op’ t Eynde, J. Craninckx, P. Goetschalckx, “A Fully-Integrated Zero-IF DECT Transceiver,” in ISSCC Digest of Technical Papers, pp. 138–139, February 2000.

    Google Scholar 

  96. A. Jayaraman, B. Terry, B. Fransis, P. Sullivan, M. Lindstrom, J. O’Connor, “A Fully Integrated Broadband Direct-Conversion Receiver for DBS Applications,” in ISSCC Digest of Technical Papers, pp. 140–141, February 2000.

    Google Scholar 

  97. S. Navid, F. Behbahani, A. Fotowat, A. Hajimiri, R. Gaethke, M. Delurio, “Level-Locked Loop, A Technique for Broadband Quadrature Signal Generation,” in Proceedings of the Custom Integrated Circuits Conf., pp. 411–414, May 1997.

    Google Scholar 

  98. M. Cohn, J. E. Degenford, B. A. Newman, “Harmonic Mixing with an Antiparallel Diode Pair,” IEEE Trans. on Microwave Theory and Techniques, vol. 23, pp. 667–673, August 1975.

    Google Scholar 

  99. K. Itoh, A. Iida, Y. Sasaki, S. Urasaki, “A 40 GHz Band Monolithic Even Harmonic Mixer With an Antiparallel Diode Pair,” in MTT-S International Microwave Symposium Digest of Technical Papers, pp. 879–882, June 1991.

    Google Scholar 

  100. M. Shimozawa, K. Kawakami, K. Itoh, A. Iida, O. Ishida, “A Novel Sub-Harmonic Pumping Direct Conversion Receiver With High Instantaneous Dynamic Range,” in MTT-S International Microwave Symposium Digest of Technical Papers, pp. 819–822, June 1996.

    Google Scholar 

  101. T. Yamaji, H. Tanimoto, “A 2 GHz Balanced Harmonic Mixer for Direct-Conversion Receivers,” in Proceedings of the Custom Integrated Circuits Conf., pp. 193–196, May 1997.

    Google Scholar 

  102. R. J. van de Plassche, P. Baltus, “An 8-bit 100-MHz Full-Nyquist Analog-to-Digital Converter,” IEEE J. Solid-State Circuits, vol. 23, pp. 1334–1344, December 1988.

    Google Scholar 

  103. P. Orsatti, Q. Huang, “A 170 MHz Quadrature-Downconverter in 0.8μm BiCMOS for Very Low Power Pagers,” in Proceedings of the European Solid-State Circuits Conf., pp. 270–273, September 1999.

    Google Scholar 

  104. D. Senderowicz, S. Azuma, H. Matsui, K. Hara, S. Kawama, Y. Ohta, M. Miyamoto, K. Iizuka, “A 23mW 256-Tap 8MSample/s Matched Filter for DS-CDMA Cellular Telephony Using Recycling Integrator Correlators,” in ISSCC Digest of Technical Papers, pp. 354–355, February 2000.

    Google Scholar 

  105. M. D. Hahm, E. G. Friedman, E. L. Titlebaum, “A Comparison of Analog and Digital Circuit Implementations for Use in Portable Wireless Communications Terminals,” IEEE Trans. on Circuits and Syst.—II: Analog and Digital Signal Processing, vol. 44, pp. 498–506, June 1997.

    Google Scholar 

  106. M. Bank, J. Gavan, “Practical Realisation of a Raised-Cosine Filter,” Electronics Letters, vol. 32, pp. 438–440, February 1996.

    Google Scholar 

  107. P. J. Chang, A. Rofougaran, A. A. Abidi, “A CMOS Channel-Select Filter for a Direct-Conversion Wireless Receiver,” IEEE J. Solid-State Circuits, vol. 32, pp. 722–729, May 1997.

    Google Scholar 

  108. Y. P. Tsividis, “Integrated Continuous-Time Filter Design-An Overview,” IEEE J. Solid-State Circuits, vol. 29, pp. 166–176, March 1994.

    Google Scholar 

  109. J. Sevenhans, Z.-Y. Chang, “A/D and D/A Conversion for Telecommunication,” IEEE Circuits and Devices Magazine, vol. 14, pp. 32–42, January 1998.

    Google Scholar 

  110. J. Doernberg, H.-S. Lee, D. A. Hodges, “Full-Speed Testing of A/D Converters,” IEEE J. Solid-State Circuits, vol. 19, pp. 820–827, December 1984.

    Google Scholar 

  111. B. Razavi, Principles of Data Conversion System Design, Piscataway, NJ: IEEE Press, 1995.

    Google Scholar 

  112. J. K. Cavers, S. P. Stapleton, “A DSP-Based Alternative to Direct Conversion Receivers for Digital Mobile Communications,” Proceedings of the IEEE Global Telecommunication Conf., pp. 2024–2029, November 1990.

    Google Scholar 

  113. S. S. Lewis, P. R. Gray, “A Pipelined 9-bit 5-MSample/s Analog-to-Digital Converter”, IEEE J. Solid-State Circuits, vol. 22, pp. 954–961, December 1987.

    Google Scholar 

  114. R. J. van de Plassche, P. Baltus, “An 8-bit 100-MHz Full-Nyquist Analog-to-Digital Converter,” IEEE J. Solid-State Circuits, vol. 23, pp. 1334–1344, December 1988.

    Google Scholar 

  115. Y.-M. Lin, B. Kim, P. R. Gray, “A 13-b 2.5-MHz Self-Calibrated Pipelined A/D Converter in 3-μm CMOS,” IEEE J. Solid-State Circuits, vol. 26, pp. 628–635, April 1991.

    Google Scholar 

  116. C. Conroy, D. Cline, P. Gray, “An 8-b 85-Ms/s Parallel Pipeline A/D Converter in 1μm CMOS,” IEEE J. Solid-State Circuits, vol. 28, pp. 447–454, April 1993.

    Google Scholar 

  117. M. Yotsuyanagi, T. Etoh, K. Hirata, “A 10-b 50-MHz Pipelined CMOS A/D Converter with S/H,” IEEE J. Solid-State Circuits, vol. 28, pp. 292–300, March 1993.

    Google Scholar 

  118. A. N. Karanicolas, H.-S. Lee, K. L. Bacrania, “A 15b 1-MSample/s Digitally Self-Calibrated Pipeline ADC,” IEEE J. Solid-State Circuits, vol. 28, pp. 1207–1215, December 1993.

    Google Scholar 

  119. J. Yuan, C. Svensson, “A 10-bit 5-Ms/s Successive Approximation ADC Cell Used in a 70-Ms/s ADC Array in 1.2μm CMOS,” IEEE J. Solid-State Circuits, vol. 29, pp. 866–872, August 1994.

    Google Scholar 

  120. W. C. Song, H. W. Choi, S. U. Kwak, B.-S. Song, “A 10-b 20-MSample/s Low-Power CMOS ADC”, IEEE J. Solid-State Circuits, vol. 30, pp. 514–521, May 1995.

    Google Scholar 

  121. T. B. Cho, P. R. Gray, “A 10 b, 20 MSample/s, 35 mW Pipeline A/D Converter”, IEEE J. Solid-State Circuits, vol. 30, pp. 166–172, March 1995.

    Google Scholar 

  122. K. Nakamura, M. Hotta, L. R. Carley, D. J. Allstot, “An 85 mW, 10 b, 40 MSample/s, CMOS Parallel-Pipelined ADC”, IEEE J. Solid-State Circuits, vol. 30, pp. 173–183, March 1995.

    Google Scholar 

  123. T.-H. Shu, B.-S. Song, K. Bacrania, “A 13-b 10-MSample/s ADC Digitally Calibrated with Oversampling Delta-Sigma Converter,” IEEE J. Solid-State Circuits, vol. 30, pp. 443–452, April 1995.

    Google Scholar 

  124. K. Nagaraj, H. S. Fetterman, R. S. Shariatdoust, J. Anidjar, S. H. Lewis, J. Alsayegh, R. G. Renninger “An 8-Bit 50+ MSamples/s Pipelined A/D Converter With An Area And Power Efficient Architecture”, in Proceedings of the Custom Integrated Circuits Conf., pp. 423–426, May 1996.

    Google Scholar 

  125. A. G. W. Venes, R. van de Plassche, “An 80MHz 80mW 8b CMOS folding A/D Converter with Distributed T/H Preprocessing,” in ISSCC Digest of Technical Papers, pp. 318–319, February 1996.

    Google Scholar 

  126. T. Kumamoto, O. Matsumoto, M. Ito, T. Okuda, H. Momono, T. Miki, K. Okada, T. Sumi, “A 10-bit 50 MS/s 300 mW A/D Converter Using Reference Feed-Forward Architecture”, in Proceedings of the European Solid-State Circuits Conf., pp. 220–223, September 1996.

    Google Scholar 

  127. P. C. Yu, H.-S. Lee, “A 2.5V 12b 5MSample/s Pipelined CMOS ADC”, in ISSCC Digest of Technical Papers, pp. 314–315, February 1996.

    Google Scholar 

  128. S. I. Lim, S. H. Lee, A. Y. Hwang, “A 12b 10MHz 250mW CMOS A/D Converter”, in ISSCC Digest of Technical Papers, pp. 316–317, February 1996.

    Google Scholar 

  129. D. W. Cline, P. R. Gray, “A Power Optimized 13-b, 5 MSamples/s Pipelined Analog-to-Digital Converter in 1.2μm CMOS”, IEEE J. Solid-State Circuits, vol. 31, pp. 294–303, March 1996.

    Google Scholar 

  130. K. Nagaraj, H. S. Fetterman, J. Anidjar, S. H. Lewis, R. G. Renninger, “A 250-mW 8-b 52-MSample/s Parallel-Pipelined A/D Converter with Reduced Number of Amplifiers,” IEEE J. Solid-State Circuits, vol. 32, pp. 312–320, March 1997.

    Google Scholar 

  131. K. Bult, A. Buchwald, J. Laskowski, “A 170mW 10b 50MSample/s CMOS ADC in 1mm2,” in ISSCC Digest of Technical Papers, pp. 136–137, February 1997.

    Google Scholar 

  132. K. Y. Kim, N. Kusayanagi, A. A. Abidi, “A 10-bit, 100MS/s CMOS A/D Converter”, IEEE J. Solid-State Circuits, vol. 32, pp. 302–311, March 1997.

    Google Scholar 

  133. P. Vorenkamp, R. Roovers, “A 12b 50MSample/s Cascaded Folding and Interpolating ADC,” in ISSCC Digest of Technical Papers, pp. 134–135, February 1997.

    Google Scholar 

  134. R. Jewett, K. Poulton, K.-C. Hsieh, J. Doernberg, “A 12b 128MSample/s ADC with 0.05LSB DNL,” in ISSCC Digest of Technical Papers, pp. 138–139, February 1997.

    Google Scholar 

  135. S. U. Kwak, B.-S. Song, K. Bacrania, “A 15b 5MSample/s Low-Spurious CMOS ADC,” in ISSCC Digest of Technical Papers, pp. 146–147, February 1997.

    Google Scholar 

  136. W. Bright, “8b 75MSamples/s 70mW Parallel Pipelined ADC Incorporating Double Sampling,” in ISSCC Digest of Technical Papers, pp. 146–147, February 1998.

    Google Scholar 

  137. D. Fu, K. Dyer, S. Lewis, P. Hurst, “Digital Background Calibration of a 10b 40MSample/s Parallel Pipelined ADC,” in ISSCC Digest of Technical Papers, pp. 140–141, February 1998.

    Google Scholar 

  138. K. Dyer, D. Fu, S. Lewis, P. Hurst, “Analog Background Calibration of a 10b 40MSample/s Parallel Pipelined ADC,” in ISSCC Digest of Technical Papers, pp. 142–143, February 1998.

    Google Scholar 

  139. A. Wada, K. Kato, K. Tani, H. Shimizu, “A 10b 50-MSample/s CMOS ADC in ASIC Process,” in Proceedings of the European Solid-State Circuits Conf., pp. 252–255, September 1998.

    Google Scholar 

  140. J. Ingino, B. Wooley, “A Continuously-Calibrated 10MSample/s 12b 3.3V ADC,” in ISSCC Digest of Technical Papers, pp. 144–145, February 1998.

    Google Scholar 

  141. I. Opris, L. Lewicki, B. Wong, “A Single-Ended 12b 20MSamples/s Self-Calibrating Pipeline A/D Converter,” in ISSCC Digest of Technical Papers, pp. 138–139, February 1998.

    Google Scholar 

  142. K. Nagaraj, F. Chen, T. Le, T. R. Viswanathan, “Efficient 6-Bit A/D Converter Using a 1-Bit Folding Front-End,” IEEE J. Solid-State Circuits, vol. 34, pp. 1056–1062, August 1999.

    Google Scholar 

  143. Y. Tamba, K. Yamakido, “A CMOS 6b 500MSample/s ADC for a Hard Disk Drive Read Channel,” in the Digest of Int. Solid-State Circuits Conf. 99, pp. 324–325, February 1999.

    Google Scholar 

  144. K. Yoon, S. Park, W. Kim, “A 6b 500MSample/s CMOS Flash ADC with a Background Interpolated Auto-Zeroing Technique,” in ISSCC Digest of Technical Papers, pp. 326–327, February 1999.

    Google Scholar 

  145. M. Waltari, K. Halonen, “An 8-bit Low-Voltage Pipelined ADC Utilizing Switched-Opamp Technique,” in Proceedings of the European Solid-State Circuits Conf., pp. 174–177, Sepember 1999.

    Google Scholar 

  146. B. Brandt, J. Lutsky, “A 75mW 10b 20MSample/s CMOS Subranging ADC with 59dB SNDR,” in ISSCC Digest of Technical Papers, pp. 322–323, February 1999.

    Google Scholar 

  147. H. van der Ploeg, R. Remmers, “A 3.3V 10b 25MSample/s Two-Step ADC in 035μm CMOS,” in ISSCC Digest of Technical Papers, pp. 318–319, February 1999.

    Google Scholar 

  148. B. W. Lee, G. H. Cho, “A CMOS 10Bit 37MS/s Pipelined A/D Converter with Code Regeneration and Averaging,” in Proceedings of the European Solid-State Circuits Conf., pp. 314–317, September 1999.

    Google Scholar 

  149. G. Hoogzaad, R. Roovers, “A 65mW 10b 40MSample/s BiCMOS Nyquist ADC in 0.8mm2,” in ISSCC Digest of Technical Papers, pp. 320–321, February 1999.

    Google Scholar 

  150. P. Rombouts, S. Audenaert, L. Weyten, “A CMOS 12-bit 15 MSample/s Digitally Self-Calibrated Pipelined A/D Converter,” in Proceedings of the European Solid-State Circuits Conf., pp. 326–329, September 1999.

    Google Scholar 

  151. S. Paul, H.-S. Lee, T. Alailima, D. Santiago, “A Nyquist-Rate Pipelined Oversampling A/D Converter,” in ISSCC Digest of Technical Papers, pp. 54–55, February 1999.

    Google Scholar 

  152. D. U. Thompson, B. A. Wooley, “A 15-bit Pipelined Floating-Point A/D Converter,” in Proceedings of the European Solid-State Circuits Conf., pp. 170–173, September 1999.

    Google Scholar 

  153. K. Nagaraj, D. A. Martin, M. Wolfe, R. Chattopadhyay, S. Pavan, J. Cancio, T. R. Viswanathan, “A 700MSample/s 6b Read Channel A/D Converter with 7b Servo Mode,” in ISSCC Digest of Technical Papers, pp. 426–427, February 2000.

    Google Scholar 

  154. K. Sushihara, H. Kimura, Y. Okamoto, K. Nishimura, A. Matsuzawa, “A 6b 800MSample/s CMOS A/D Converter,” in ISSCC Digest of Technical Papers, pp. 428–429, February 2000.

    Google Scholar 

  155. J. Ming, S. H. Lewis, “An 8b 80MSample/s Pipelined ADC with Background Calibration,” in ISSCC Digest of Technical Papers, pp. 42–43, February 2000.

    Google Scholar 

  156. H. Pan, M. Segami, M. Choi, J. Cao, F. Hatori, A. Abidi, “A 3.3V, 12b, 50MSample/s A/D Converter in 0.6μm CMOS with over 80dB SFDR,” in ISSCC Digest of Technical Papers, pp. 40–41, February 2000.

    Google Scholar 

  157. L. Singer, S. Ho, M. Timko, D. Kelly, “A 12b 65MSample/s CMOS ADC with 82dB SFDR at 120 MHz,” in ISSCC Digest of Technical Papers, pp. 38–39, February 2000.

    Google Scholar 

  158. M.-J. Choe, B.-S. Song, K. Bacrania, “A 13b 40MSample/s CMOS Pipelined Folding ADC with Background Offset Trimming,” in ISSCC Digest of Technical Papers, pp. 36–37, February 2000.

    Google Scholar 

  159. I. E. Opris, B. C. Wong, S. W. Chin, “A Pipeline A/D Converter Architecture with Low DNL,” IEEE Journal of Solid-State Circuits, vol. 35, no. 2, pp. 281–285, February 2000.

    Article  Google Scholar 

  160. H.-S. Chen, K. Bacrania, B.-S. Song, “A 14b 20MSample/s CMOS Pipelined ADC,” in ISSCC Digest of Technical Papers, pp. 46–47, February 2000.

    Google Scholar 

  161. C. Moreland, M. Elliot, F. Murden, J. Young, M. Hensley, R. Stop, “A 14b 100MSample/s 3-Stage A/D Converter,” in ISSCC Digest of Technical Papers, pp. 34–35, February 2000.

    Google Scholar 

  162. J. Jensen, G. Raghavan, A. Cosand, R. Walden, “A 3.2GHz Second-Order Delta-Sigma Modulator Implemented in InP HBT Technology,” IEEE J. Solid-State Circuits, vol. 30, pp. 1119–1127, October 1995.

    Google Scholar 

  163. F. Chen, B. Leung, “A 0.25-mW Low-Pass Passive Sigma-Delta Modulator with Built-In Mixer for a 10-MHz IF Input,” IEEE J. Solid-State Circuits, vol. 32, pp. 774–782, June 1997.

    Google Scholar 

  164. T. L. Brooks, D. H. Robertson, D. F. Kelly, A. Del Muro, S. W. Harston, “A 16b ΣΔ Pipeline ADC with 2.5MHz Output Data-Rate,” in ISSCC Digest of Technical Papers, pp. 208–209, February 1997.

    Google Scholar 

  165. A. R. Feldman, B. E. Boser, P. R. Gray, “A 13-Bit, 1.4 MS/s Sigma-Delta Modulator for RF Baseband Channel Applications,” IEEE J. Solid-State Circuits, vol. 33, pp. 1462–1469, October 1998.

    Google Scholar 

  166. Y. Geerts, A. Marques, M. Steyaert, W. Sansen, “A 3.3V 15-bit Delta-Sigma ADC with a Signal Bandwidth of 1.1MHz for ADSL-Applications,” in Proceedings of the European Solid-State Circuits Conf., pp. 168–171, September 1998.

    Google Scholar 

  167. H. Tao, J. M. Khoury, “A 100MHz IF, 400 MSample/s CMOS Direct-Conversion Bandpass ΔΣ Modulator,” in ISSCC Digest of Technical Papers, pp. 60–61, February 1999.

    Google Scholar 

  168. Y. Kobayashi, K. Furukawa, K. Yamakido, “A 1mW Delta-Sigma ADC with Fully Integrated Baseband Module for GSM Application,” in Proceedings of the European Solid-State Circuits Conf., pp. 178–181, September 1999.

    Google Scholar 

  169. A. Namdar, B. H. Leung, “A 400MHz 12b 18mW IF Digitizer with Mixer Inside a ΔΣ Modulator Loop,” in ISSCC Digest of Technical Papers, pp. 62–63, February 1999.

    Google Scholar 

  170. L. J. Breems, E. J. van der Zwan, E. C. Dijkmans, J. H., Huijsing, “A 1.8 mW CMOS ΔΣ Modulator with Integrated Mixer for A/D Conversion of IF Signals,” in ISSCC Digest of Technical Papers, pp. 52–53, February 1999.

    Google Scholar 

  171. S. Lindfors, M. Länsirinne, T. Lindeman, K. Halonen, “A Two-Bit ΔΣ-Modulator with 83dB SNDR for Digital Cellular Telephones,” in Proceedings of the European Solid-State Circuits Conf., pp. 334–337, September 1999.

    Google Scholar 

  172. I. Fujimori, L. Longo, A. Hairapetian, K. Seiyama, S. Kosic, J. Cao, S.-I. Chan, “A 90dB SNR, 2.5MHz Output Rate ADC Using Cascaded Multibit ΔΣ Modulator at 8x Oversampling Ratio,” in ISSCC Digest of Technical Papers, pp. 338–339, February 2000.

    Google Scholar 

  173. Y. Geerts, M. Steyaert, W. Sansen, “A 2.5MSample/s Multi-Bit ΔΣ CMOS ADC with 95dB SNR,” in ISSCC Digest of Technical Papers, pp. 336–337, February 2000.

    Google Scholar 

  174. A. K. Ong, B. A. Wooley, “A Two-Path Bandpass ΔΣ Modulator for Digital IF Extraction at 20MHz,” in ISSCC Digest of Technical Papers, pp. 212–213, February 1997.

    Google Scholar 

  175. G. Raghavan, J. F. Jensen, R. H. Halden, W. P. Posey, “A Bandpass ΔΣ Modulator with 92dB SNR and Center Frequency Continuously Programmable from 0 to 70 MHz,” in ISSCC Digest of Technical Papers, pp. 214–215, February 1997.

    Google Scholar 

  176. W. Gao, W. M. Snelgrove, “A 950-MHz IF Second-Order Integrated LC Bandpass Delta-Sigma Modulator,” IEEE J. Solid-State Circuits, vol. 33, pp. 723–732, May 1998.

    Google Scholar 

  177. D. Tonietto, P. Cusinato, F. Stefani, A. Baschirotto, “A 3.3V CMOS 10.7MHz 6th-Order Bandpass ΔΣ Modulator with 78dB Dynamic Range,” in Proceedings of the European Solid-State Circuits Conf., pp. 78–81, September 1999.

    Google Scholar 

  178. S. Bazarjani, S. Younis, J. Goldblatt, D. Butterfield, G. McAllister, S. Ciccarelli, “An 85 MHz IF Bandpass Sigma-Delta Modulator for CDMA Receivers,” in Proceedings of the European Solid-State Circuits Conf., pp. 266–269, September 1999.

    Google Scholar 

  179. J. van Engelen, R. van de Plassche, E. Stikvoort, A. Venes, “A 6th-Order Continuous-Time Bandpass ΔΣ Modulator for Digital Radio IF,” in ISSCC Digest of Technical Papers, pp. 56–57, February 1999.

    Google Scholar 

  180. R. Maurino, P. Mole, “A 200MHz IF, 11 Bit, 4th Order Band-Pass ΔΣ ADC in SiGe,” in Proceedings of the European Solid-State Circuits Conf., pp. 74–77, September 1999.

    Google Scholar 

  181. P. Larsson, “Resonance and Damping in CMOS Circuits with On-Chip Decoupling Capacitance,” IEEE Trans, on Circuits and Syst.—I: Fundamental Theory and Applications, vol. 45, pp. 849–858, August 1998.

    Google Scholar 

  182. M. Ingels, M. S. J. Steyaert, “Design Strategies and Decoupling Techniques for Reducing the Effects of Electrical Interference in Mixed-Mode IC’s,” IEEE J. Solid-State Circuits, vol. 32, pp. 1136–1141, July 1997.

    Google Scholar 

  183. B. Gilbert, “A Precise Four-Quadrant Multiplier with Subnanosecond Response,” IEEE J. Solid-State Circuits, vol. 3, pp. 365–373, December 1968.

    Google Scholar 

  184. R. G. Meyer, “Intermodulation in High-Frequency Bipolar Transistor Integrated-Circuit Mixers,” IEEE J. Solid-State Circuits, vol. 21, pp. 534–537, August 1986.

    Google Scholar 

  185. J. Ryynänen, A. Pärssinen, J. Jussila, K. Halonen, “An RF Front-End for the Direct Conversion WCDMA Receiver,” in Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium, pp. 21–24, June 1999.

    Google Scholar 

  186. K. L. Fong, C. D. Hull, R. G. Meyer, “A Class AB Monolithic Mixer for 900-MHz Applications,” IEEE J. Solid-State Circuits, vol. 32, pp. 1166–1172, August 1997.

    Google Scholar 

  187. P. Wambacq, W. Sansen, Distortion Analysis of Analog Integrated Circuits, Boston, Dordrecht, London: Kluwer, 1998.

    Google Scholar 

  188. B. Gilbert, “Design Considerations for Active BJT mixers,” in Low-Power HF Microelectrinics; A Unified Approach, G. A. S. Machado, Ed. London: IEE Circuits and Systems Series 8, 1996; Ch. 23, pp. 837–928.

    Google Scholar 

  189. K. L. Fong, R. G. Meyer, “High-Frequency Nonlinearity Analysis of Common-Emitter and Differential-Pair Transconductance Stages,” IEEE J. Solid-State Circuits, vol. 33, pp. 548–555, April 1998.

    Google Scholar 

  190. G. L. Baldwin, G. A. Rigby, “New Techniques for Drift Compensation in Integrated Differential Amplifiers,” IEEE J. Solid-State Circuits, vol. 3, pp. 325–330, December 1968.

    Google Scholar 

  191. J. C. Schmoock, “An Input Stage Transconductance Reduction Technique for High-Slew Rate Operational Amplifiers,” IEEE J. Solid-State Circuits, vol. 10, pp. 407–411, December 1975.

    Google Scholar 

  192. B. Gilbert, “The Multi-tanh Principle: A Tutorial Overview,” IEEE J. Solid-State Circuits, vol. 33, pp. 2–17, January 1998.

    Google Scholar 

  193. W. M. C. Sansen, R. G. Meyer, “An Integrated Wide-Band Variable-Gain Amplifier with Maximum Dynamic Range,” IEEE J. Solid-State Circuits, vol. 9, pp. 159–166, August 1974.

    Google Scholar 

  194. J. Durec, E. Main, “A Linear Class AB Single-Ended to Differential Transconverter Suitable for RF Circuits,” in MTT-S International Microwave Symposium Digest of Technical Papers, pp. 1071–1074, June 1996.

    Google Scholar 

  195. B. Gilbert, “The MICROMIXER: A Highly Linear Variant of the Gilbert Mixer Using a Bisymmetric Class-AB Input Stage,” IEEE J. Solid-State Circuits, vol. 32, pp. 1412–1423, September 1997.

    Google Scholar 

  196. J. Durec, “An Integrated Silicon Bipolar Receiver Subsystem for 900-MHz ISM Band Applications,” IEEE J. Solid-State Circuits, vol. 33, pp. 1352–1372, September 1998.

    Google Scholar 

  197. S. Wu, B. Razavi, “A 900-MHz/1.8-GHz CMOS Receiver for Dual-Band Applications,” IEEE J. Solid-State Circuits, vol. 33, pp. 2178–2185, December 1998.

    Google Scholar 

  198. A. Nedungadi, T. R. Viswanathan, “Design of Linear CMOS Transconductance Elements,” IEEE Trans. on Circuits and Syst., vol. 31, pp. 891–894, October 1984.

    Google Scholar 

  199. J. N. Babanezhad, G. C. Temes, “A 20-V Four-Quadrant CMOS Analog Multiplier,” IEEE J. Solid-State Circuits, vol. 20, pp. 1158–1168, December 1985.

    Google Scholar 

  200. K. Kimura, “Some Circuit Design Techniques Using Two Cross-Coupled, Emitter-Coupled Pairs,” IEEE Trans. on Circuits and Syst.—I: Fundamental Theory and Applications, vol. 41, pp. 411–423, May 1994.

    Google Scholar 

  201. Q. Huang, F. Piazza, P. Orsatti, T. Ohguro, “The Impact of Scaling Down to Deep Submicron on CMOS RF Circuits,” IEEE J. Solid-State Circuits, vol. 33, pp. 1023–1036, July 1998.

    Google Scholar 

  202. F. Piazza, Q. Huang, “A High Linearity, Single-Ended Input Double-Balanced Mixer in 0.25μm CMOS,” in Proceedings of the European Solid-State Circuits Conf., pp. 60–63, September 1998.

    Google Scholar 

  203. B. Razavi, “A 1.5V 900MHz Downconversion Mixer,” in ISSCC Digest of Technical Papers, pp. 48–49, February 1996.

    Google Scholar 

  204. H. Komurasaki, H. Sato, N. Sasaki, T. Miki, “A 2-V 1.9-GHz Si Down-Conversion Mixer with an LC Phase Shifter,” IEEE J. Solid-State Circuits, vol. 33, pp. 812–815, May 1998.

    Google Scholar 

  205. T. Manku, G. Beck, E. J. Shin, “A Low-Voltage Design Technique for RF Integrated Circuits,” IEEE Trans, on Circuits and Syst.—II: Analog and Digital Signal Processing, vol. 45, pp. 1408–1413, October 1998.

    Google Scholar 

  206. M. Harada, T. Tsukahara, J. Yamada, “0.5-IV 2GHz RF Front-End Circuits in CMOS/SIMOX,” in ISSCC Digest of Technical Papers, pp. 378–379, February 2000.

    Google Scholar 

  207. B. Razavi, “A 900-MHz CMOS Direct Conversion Receiver,” in Symposium on VLSI Circuits Digest of Technical Papers, pp. 113–114, June 1997.

    Google Scholar 

  208. A. Pärssinen, S. Lindfors, J. Ryynänen, S. I. Long, K. Halonen, “1.8 GHz CMOS LNA with On-Chip DC-Coupling for a Subsampling Direct Conversion Front-End,” in Proceedings of the IEEE International Symposium on Circuits and Systems, vol. 2, pp. 73–76, June 1998.

    Google Scholar 

  209. P. J. Sullivan, B. A. Xavier, W. H. Kuhn, “Low Voltage Performance of a Microwave CMOS Gilbert Cell Mixer,” IEEE J. Solid-State Circuits, vol. 32, pp. 1151–1155, July 1997.

    Google Scholar 

  210. J. H. Huijsing, J. A. van Steenwijk, “A Monolithic Analog Exponential Converter,” IEEE J. Solid-State Circuits, vol. 15, pp. 162–168, April 1980.

    Google Scholar 

  211. D. C. Soo, R. G. Meyer, “A Four-Quadrant NMOS Analog Multiplier,” IEEE J. Solid-State Circuits, vol. 17, pp. 1174–1178, July 1982.

    Google Scholar 

  212. W. H. Lambert, “Second-Order Distortion in CATV Push-Pull Amplifiers,” Proceedings of the IEEE, vol. 58, pp. 1057–1062, July 1970.

    Google Scholar 

  213. C. D. Hull, R. G. Meyer, “A Systematic Approach to the Analysis of Noise in Mixers,” IEEE Trans. on Circuits and Syst.—I: Fundamental Theory and Applications, vol. 40, pp. 909–919, December 1993.

    Google Scholar 

  214. M. T. Terrovitis, R. G. Meyer, “Noise in Current-Commutating CMOS Mixers,” IEEE J. Solid-State Circuits, vol. 34, pp. 772–783, June 1999.

    Google Scholar 

  215. Y. Hu, K. Mayaram, “Behavioral Models for Noise in Bipolar and MOSFET Mixers,” IEEE Trans. on Circuits and Syst.—II: Analog and Digital Signal Processing, vol. 46, pp. 1289–1300, October 1999.

    Google Scholar 

  216. H. Darabi, A. A. Abidi, “Noise in RF-CMOS Mixers: A Simple Physical Model,” IEEE J. Solid-State Circuits, vol. 35, pp. 15–25, January 2000.

    Google Scholar 

  217. E. Bautista, B. Bastani, J. Heck, “Improved Mixer IIP2 Through Dynamic Matching,” in ISSCC Digest of Technical Papers, pp. 376–377, February 2000.

    Google Scholar 

  218. P. R. Gray, R. G. Meyer, Analysis and Design of Analog Integrated Circuits, 2nd ed., New York: John Wiley & Sons, 1984.

    Google Scholar 

  219. M. Steyaert, J. Janssens, B. D. Muer, M. Borremans, N. Itoh, “A 2V CMOS Cellular Transceiver Front-End,” in ISSCC Digest of Technical Papers, pp. 142–143, February 2000.

    Google Scholar 

  220. H. O. Johansson, C. Svensson, “Time Resolution of NMOS Sampling Switches Used on Low-Swing Signals,” IEEE J. Solid-State Circuits, vol. 33, pp. 237–244, February 1998.

    Google Scholar 

  221. R. Singh, “A Review of Substrate Coupling Issues and Modeling Strategies,” in Proceedings of the Custom Integrated Circuits Conf., pp. 491–498, May 1998.

    Google Scholar 

  222. A. Abidi, A. Rofougaran, G. Chang, J. Rael, J. Chang, M. Rofougaran, P. Chang, “The Future of CMOS Wireless Transceiver,” in ISSCC Digest of Technical Papers, pp. 118–119, February 1997.

    Google Scholar 

  223. T.-P. Liu, E. Westerwick, N. Rohani, R.-H. Van, “5GHz CMOS Radio Transceiver Front-End Chipset,” in ISSCC Digest of Technical Papers, pp. 320–321, February 2000.

    Google Scholar 

  224. J. Ryynänen, K. Kivekäs, J. Jussila, A. Pärssinen, K. Halonen, “A Dual-Band RF Front-End for WCDMA and GSM Applications,” in Proceedings of the Custom Integrated Circuits Conf., pp. 175–178, May 2000.

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2002). Direct Conversion Receivers. In: Pärssinen, A. (eds) Direct Conversion Receivers in Wide-Band Systems. The International Series in Engineering and Computer Science, vol 655. Springer, Boston, MA. https://doi.org/10.1007/0-306-47545-6_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-47545-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7607-1

  • Online ISBN: 978-0-306-47545-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics