Skip to main content

Effects of Morphine on T-cell Recirculation in Rhesus Monkeys

  • Chapter
Neuroimmune Circuits, Drugs of Abuse, and Infectious Diseases

Abstract

A 2-yr study on effects of morphine on lymphocyte circulation in rhesus monkeys (Macaca mulatta) showed that, over time, a well-maintained morphine-dependency caused biphasic depressive effects on circulating lymphocyte levels. Depression of T cell circulation by opiates actually was a relative effect. Morphine exposure basically stabilized T cell circulation in the context of concurrent increases in controls. Biphasic effects of morphine were attributable to distinctions in circulation kinetics of CD4+/CD62L (+ & -) T cells. That is, levels of CD4+/CD62L+ T cells were selectively depressed by opiates through the first 32wk after initiation of drug, and levels of CD4+/CD62L-T cells were selectively depressed thereafter. Regression analyses also showed that morphine stabilized lymphocyte recirculation. Circulating levels of resting and activated-memory types of T cells were positively correlated in opiateexposed monkeys during the first 32wk after opiate exposure--an effect not seen with control monkeys. Considerations of changes in the types of experimental stressors extant during the study suggested that temporally differential effects of opiates on T cell recirculation were connected with changes in the stress environment and the ability of morphine to modulate these changes. Thus, morphine, and by inference the endogenous opioid system, are involved in homeostasis of lymphocyte recirculation, probably through effects on central mediation of the stress axis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ansari, A.A., Brodie, A.R., Fultz, P.N., Anderson, P.C., Sell, K.W., McClure, H.M., 1989. Fl microfluorometric analysis of peripheral blood mononuclear cells from nonhuman primates: correlation of phenotype with immune function. Amer. J. Primatol. 17, 107–131.

    Google Scholar 

  • Appel, N.M., Kiritsky-Roy, J.A., VanLoon, G.R., 1986. Mu receptors at discrete hypothalam and brainstem sites mediate opioid peptide-induced increases in central sympathetic outflow. Brain Res. 378, 8–20.

    Article  PubMed  CAS  Google Scholar 

  • Baddley, J. W., Paul, D., Carr, D.J.J., 1993. Acute morphine administration alters the expression of β-adrenergic receptors on splenic lymphocytes. Adv. Biosci. 86, 593–597.

    CAS  Google Scholar 

  • Baiter, M., 1995. Cytokines move from the margins to the spotlight. Science 268, 205–206.

    Google Scholar 

  • Blalock, J.E., 1984. The immune system as a sensory organ. J. Immunol. 132:1067–1070.

    PubMed  CAS  Google Scholar 

  • Blue, M-L., Daley, J.F., Levine, H., Schlossman, S.F., 1985. Coexpression of T4 and T8 on peripheral blood T cells demonstrated by two-color fluorescence flowcytometry. J. Immunol. 134, 2281–1286.

    PubMed  CAS  Google Scholar 

  • Bussiere, J.L., M.W. Adler, T.J. Rogers, T.K.E. Eisenstein, 1992. Differential effects of morphine and naltrexone on the antibody response in various mouse strains. Immunopharmacol. Immunotoxicol. 14, 657–673.

    PubMed  CAS  Google Scholar 

  • Camerini, D., James, S.P., Stamenkovic, I., Seed B., 1989. Leu8/TQl is the human equivalent of the MEL-14 lymph node homing receptor. Nature (Lond.) 342, 78–82.

    Article  CAS  Google Scholar 

  • Cantacuzene, J., 1898. Nouvelles recherches sur le mode de destruction des vibrions dans 1’organisme. Ann. Inst. Pasteur 12, 274–300.

    Google Scholar 

  • Capitanio, J.P., Mendoza, S.P., Lerche, N.W., Mason W.A., 1998. Social stress results in altered glucocorticoid regulation and shorter survival in simian acquired immune deficiency syndrome. Proc. Natl. Acad. Sci., U.S.A. 95, 4714–4719.

    Article  PubMed  CAS  Google Scholar 

  • Carr, D.J., France, C.P., 1993. Immune alterations in morphine-treated rhesus monkeys. J. Pharmacol. Exp. Ther. 267, 9–15.

    PubMed  CAS  Google Scholar 

  • Christie, M.J., Trisdikoon, P., Chesher, G.B., 1982. Tolerance and cross tolerance with morphine resulting from physiological release of endogenous opiates. Life Sci. 31:839–845.

    Article  PubMed  CAS  Google Scholar 

  • Chuang, R.Y., Blackbourn, D.J., Chuang, L.F., Liu, Y., Kilam, Jr., K.F., 1993. Modulation of simian AIDS by opioids. Adv. Biosci. 86, 573–583.

    CAS  Google Scholar 

  • Crary, B., Hauser, S.L., Borysenko, M., Kutz, I., Hoban, C., Haut, K.A., Weiner, H.L., Benson, H., 1983. Epinephrine-induced changes in the distribution of lymphocyte subsets in peripheral blood of humans. J. Immunol. 131, 1178–1181.

    PubMed  CAS  Google Scholar 

  • Dixon, W. J., 1992. BMDP statistical software manual, second edition. University of California Press, Berkley, CA.

    Google Scholar 

  • Donahoe, R.M., Byrd, L., McClure, H.M., Fultz, P., Brantley, M., Marsteller, F., Ansari, A.A., Wenzel, D., Aceto, M., 1993. Consequences of opiate-dependency in a monkey model of AIDS. Adv. Exp. Med. Biol. 335, 21–28.

    PubMed  CAS  Google Scholar 

  • Donahoe, R.M., 1993b. Neuroimmunomodulation by opiates: relationship to HIV-1 infection and AIDS. Adv. Neuroimmunol. 3, 31–46.

    CAS  Google Scholar 

  • Donahoe, R.M., Vlahov, D., 1998. Opiates as potential cofactors in progression of HIV-1 infections to AIDS. J. Neuroimmunol. 83, 77–87.

    Article  PubMed  CAS  Google Scholar 

  • Eisenstein, T.K., Hilburger, M.E., 1998. Opioid modulation of immune responses: effects on phagocyte and lymphoid cell populations. J. Neuroimmunol. 83, 36–44.

    Article  PubMed  CAS  Google Scholar 

  • Ernstrom, U., Sandberg, G., 1974. Adrenaline-induced release of lymphocytes and granulocytes from the spleen. Biomedicine 21, 293–296.

    PubMed  CAS  Google Scholar 

  • Fecho, A., Dykstra, L.A., Lysle, D.T., 1993. Evidence for beta adrenergic receptor involvement in the immunomodulatory effects of morphine. J. Pharmacol. Exp. Ther. 365:1079–1087.

    Google Scholar 

  • Felten, S.Y., Felten, D.L., 1991. Innervation of lymphoid tissue. In: Ader, R., Felten, D.L., Cohen, N. (Eds.), Psychoneuroimmunology (second edition). Academic Press, Inc., New York, pp. 27–69.

    Google Scholar 

  • Flores, L.R., Wahl, S.M., Bayer, B.M., 1995. Mechanisms of morphine-induced imunosuppression: Effect of acute morphine administration on lymphocyte trafficking. J. Pharmacol. Exp. Ther. 272, 1246–1251.

    PubMed  CAS  Google Scholar 

  • Friedman, H., Klein, T.W., Spector, S., 1993. Drugs of abuse, immunity and AIDS. Plenum Press, New York, N.Y.

    Google Scholar 

  • Hamann, A., Jablonski-Westerich, O., Scholz, K-U., Duijvestijn, A., Butcher, B.C., Theile, H-G., 1988. Regulation of lymphocyte homing I: Alterations in homing receptor expression and organ-specific high endothelial venule binding of lymphocytes upon activation. J. Immunol. 140, 737–743.

    PubMed  CAS  Google Scholar 

  • Harris, G.C., Aston-Jones, G., 1993. Beta-adrenergic antagonists attenuate somatic and aversive signs of opiate withdrawal. Neuropsychopharmacology 9, 303–311.

    PubMed  CAS  Google Scholar 

  • Heijnen, C.J., Kavelaars, A., Ballieux, R.E., 1991. Beta-endorphin: cytokine and neuropeptide. Immunol. Rev. 119, 41–63.

    PubMed  CAS  Google Scholar 

  • Hernandez, M.C., Flores, L.R., Bayer, B.M., 1993. Immunosuppression by morphine is mediated by central pathways. J. Pharmacol. Exp. Ther. 267, 1336–1341.

    PubMed  CAS  Google Scholar 

  • Kanof, M.E., James, S.P., 1988. Leu-8 antigen expression is diminished during cell activation but does not correlate with effector function of activated T lymphocytes. J. Immunol. 140, 3701–3706.

    PubMed  CAS  Google Scholar 

  • Keller, S.E., Schleifer, S.J., Demetrikopoulos, M.K., 1991. Stress-induced changes in immune function in animals: Hypothalamo-pituitary-adrenal influences. In: Ader, R., Felten, D.L., Cohen, N. (Eds.), Psychoneuroimmunology (second edition). Academic Press, Inc., New York, pp. 771–787.

    Google Scholar 

  • Lysle, D. T., Coussans, M.E., Watts, V.J., Bennet, E.H., Dykstra, L.A., 1993. Morphineinduced alterations of immune status: Dose dependency, compartment specificity and antagonism by naltrexone. J. Pharmacol. Exp. Ther. 265, 1071–1078.

    PubMed  CAS  Google Scholar 

  • Madden, K.S., Livnat, S., 1991. Catecholamine action and immunological reactivity. In: Ader, R., Felten, D.L., Cohen, N. (Eds.), Psychoneuroimmunology (second edition). Academic Press, Inc., New York, pp. 283–310.

    Google Scholar 

  • McCarty, R., 1994. Regulation of plasma catecholamine responses to stress. Sem. Neurosci. 6, 197–204.

    Article  CAS  Google Scholar 

  • Molitor, T.W., Morilla, A., Risdahl, J.M., Murtaugh, M.P., Chao, C.C., Peterson, P.K., 1991. Chronic morphine administration impairs cell-mediated immune responses in swine. J. Pharmacol. Exp. Ther. 260, 581–586.

    Google Scholar 

  • Morimoto, C., Levin, N.L., Distaso, J.A., Aldrich, W.R., Schlossman, S.F., 1985. The isolation and characterization of the human suppressor inducer T cell subset. J. Immunol. 134, 1508–1515.

    PubMed  CAS  Google Scholar 

  • Murray, D.R., Irwin, M., Reardon, A., Ziegler, M., Motulsky, H., Maisel, A., 1992. Sympathetic and immune interactions during dynamic exercise: Mediation via a dependent mechanism. Circulation 86, 203–213.

    PubMed  CAS  Google Scholar 

  • Nowak, M.A., McMichael A.J., 1995. How HIV defeats the immune system. Sci. Am. 273, 58–65.

    Article  PubMed  CAS  Google Scholar 

  • Ottaway, C.A., Husband A.J., 1994. The influence of neuroendocrine pathways on lymphocyte migration. Immunol. Today 15, 511–517.

    Article  PubMed  CAS  Google Scholar 

  • Picker, L.J., 1994. Control of lymphocyte homing. Curr. Topics Immunol. 6, 394–406.

    CAS  Google Scholar 

  • Plotnikoff, N.P., Faith, R.E., Murgo, A.J., Good, R.A., 1986. Enkephalins and endorphins. Stress and the immune axis. Plenum Press, New York, N.Y.

    Google Scholar 

  • Risdhal, J.M., Peterson, P.K., Chao, C.C., Pijoan, C., Molitor, T.W., 1993. Effects of morphine dependence on the pathogenesis of swine herpes virus infection. J. Infec. Dis. 167, 1281–1287.

    Google Scholar 

  • Ruff, M.R., Whal, S.M., Mergenhagen, S., Pert, C.B., 1985. Opiate receptor-mediated chemotaxis of monocytes. Neuropeptides 5, 363–366.

    Article  PubMed  CAS  Google Scholar 

  • Sadeghi, A., Behmard, S., Vasselinovitch, S., 1979. Opium: a potential urinary bladder carcinogen in man. Cancer 43, 2315–2321.

    PubMed  CAS  Google Scholar 

  • Sapira, J.D., 1968. The narcotic addict as a medical patient. Am. J. Med. 45, 555–588.

    Article  PubMed  CAS  Google Scholar 

  • Sharp, C.W., 1998. Pharmaconeuroimmunology, AIDS and other diseases. J. Neuroimmunol. 83, 1–174.

    Article  PubMed  CAS  Google Scholar 

  • Steel, C.M., French, E.B., Aitchison, W.R.C., 1971. Studies on adrenaline-induced leucocytosis in normal man. I. The role of the spleen and thoracic duct. Br. J. Haematol. 21, 413–421.

    PubMed  CAS  Google Scholar 

  • Tubaro, E., Borelli, G., Croce, C., Cavallo, G., Santiangeli, G., 1983. Effect of morphine on resistance to infection. J. Infec. Dis. 148, 656–666.

    CAS  Google Scholar 

  • Van Loon, G.R., Appel, N.M., Ho, D., 1981. β-endorphin-induced stimulation of central sympathetic outflow: β-endorphin increases plasma concentrations of epinephrine, norepinephrine, and dopamine in rats. Endocrinology 109, 46–53.

    PubMed  Google Scholar 

  • Woods, J.W., Winger, G.D., Medzihradsky, F., Smith, C.B., Gmerek, D., Aceto, M.D., Harris, L.S., May, E.L., Balster, R.L., Slifer, B.L., 1984. Evaluation of new compounds for opioid activity in rhesus monkey, rat, and mouse. NIDA Res. Monogr. 55, 309–393.

    PubMed  CAS  Google Scholar 

  • Wormser, G.P., Krupp, L.B., Hanrahan, L.P., Gavis, G., Spira, T.J., Cunningham-Rundles, S., 1983. Acquired immunodeficiency syndrome in male prisoners. Ann. Intern. Med. 98, 297–303.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Donahoe, R.M. et al. (2002). Effects of Morphine on T-cell Recirculation in Rhesus Monkeys. In: Friedman, H., Klein, T.W., Madden, J.J. (eds) Neuroimmune Circuits, Drugs of Abuse, and Infectious Diseases. Advances in Experimental Medicine and Biology, vol 493. Springer, Boston, MA. https://doi.org/10.1007/0-306-47611-8_11

Download citation

  • DOI: https://doi.org/10.1007/0-306-47611-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46466-9

  • Online ISBN: 978-0-306-47611-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics