Skip to main content

Part of the book series: Developments in Paleoenvironmental Research ((DPER,volume 3))

Summary

Pollen grains are produced and dispersed as part of the plant reproductive process. They are usually spherical or elliptical and in the size range 0.01 mm to 0.1 mm. The outer walls are extremely resistant to chemical and physical attack and are ornamented and perforated in various ways. Pollen grains are found abundantly in a variety of sediment types, from which they can be concentrated and identified, using combinations of shape, size, ornamentation, and perforations. Identification is typically at the level of genus or family, but within some groups may be possible to species level.

Analysis of the pollen content of sediments, especially from peats and freshwater lakes, was introduced about a century ago, and has developed into the most widely used and applicable technique for determining past vegetation dynamics through time. Results of pollen analyses have also been used to estimate past climate and human impact on vegetation. Numerical models of pollen dispersal are becoming increasingly sophisticated and are being used, for example, to help determine the relative proportions of woodland and open vegetation in past landscapes, solely from fossil pollen data. Numerical analyses are also helping to interpret fossil pollen by identifying major directions of variation in datasets. Problems exist with taxonomy and taphonomy, but pollen analysis remains a leading technique in past environmental reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, S. T., 1960. Silicone oil as a mounting medium for pollen grains. Danm. Geol. Unders. Række IV 4(3): 24 pp.

    Google Scholar 

  • Andersen, S. T., 1974. The Eemian freshwater deposit at Egernsund, South Jylland, and the Eemian landscape development in Denmark. Danm. Geol. Unders. Årbok (1974): 49–70.

    Google Scholar 

  • Anderson, R. S. & T. R. van Devender, 1991. Comparison of pollen and macrofossils in packrat (Neotoma) middens: a chronological sequence from the Waterman Mountains of southern Arizona, U.S.A. Rev. Palaeobot. Palynol. 68: 1–28.

    Google Scholar 

  • Armstrong, J. I., J. Calvert & C. T. Ingold, 1930. The ecology of the mountains of Mourne with special reference to Slieve Donard. Proc. R. Ir. Acad. 39B: 440–452.

    Google Scholar 

  • Assarsson, G. & E. Granlund, 1924. En metod för pollenanalys av minerogena jordarter. Geol. För. Stockh. Förh. 46: 76–82.

    Google Scholar 

  • Baker, C. A., P. A. Moxey & P. M. Oxford, 1978. Woodland continuity and change in Epping Forest. Field Stud. 4: 645–669.

    Google Scholar 

  • Bates, C. D., P. Coxon & P. L. Gibbard, 1978. A new method for the preparation of clay-rich sediment samples for palynological investigations. New Phytol. 81: 459–463.

    Google Scholar 

  • Bennett, K. D., 1983. Postglacial population expansion of forest trees in Norfolk, UK. Nature 303: 164–167.

    Article  Google Scholar 

  • Bennett, K. D., 1990. Pollen counting on a pocket computer. New Phytol. 114: 275–280.

    Google Scholar 

  • Bennett, K. D., 1994. Confidence intervals for age estimates and deposition times in late-Quaternary sediment sequences. Holocene 4: 337–348.

    Google Scholar 

  • Bennett, K. D., 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytol. 132: 155–170.

    Google Scholar 

  • Bennett, K. D., 2000. psimpoll and pscomb: computer programs for data plotting and analysis. Uppsala, Sweden: Quaternary Geology, Earth Sciences, Uppsala University. Software available on the internet at http://www.kv.geo.uu.se.

    Google Scholar 

  • Bennett, K. D., S. Boreham, M. J. Sharp & V. R. Switsur, 1992. Holocene history of environment, vegetation and human settlement on Catta Ness, Lunnasting, Shetland. J. Ecol. 80: 241–273.

    Google Scholar 

  • Bennett, K. D., J. A. Fossitt, M. J. Sharp & V. R. Switsur, 1990. Holocene vegetational and environmental history at Loch Lang, South Uist, Western Isles, Scotland. New Phytol. 114: 281–298.

    Google Scholar 

  • Bennett, K. D. & R. W. Humphry, 1995. Analysis of late-glacial and Holocene rates of vegetational change at two sites in the British Isles. Rev. Palaeobot. Palynol. 85: 263–287.

    Google Scholar 

  • Benninghoff, W. S., 1962. Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities, Pollen Spores 4: 332–333.

    Google Scholar 

  • Berglund, B. E. & M. Ralska-Jasiewiczowa, 1986. Pollen analysis and pollen diagrams. In Berglund, B. E. (ed.) Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, Chichester: 455–484.

    Google Scholar 

  • Birks, H. H. & H. J. B. Birks, 2000. Future uses of pollen analysis must include plant macrofossils. J. Biogeogr. 27: 31–35.

    Article  Google Scholar 

  • Birks, H. J. B., 1973. Past and Present Vegetation of the Isle of Skye—a Palaeoecological Study. Cambridge University Press, London, 415 pp.

    Google Scholar 

  • Birks, H. J. B., 1981. The use of pollen analysis in the reconstruction of past climates: a review. In Wigley, T. M. L., M. J. Ingram & G. Farmer (eds.) Climate and History: Studies in Past Climates and Their Impact on Man. Cambridge University Press, Cambridge: 111–138.

    Google Scholar 

  • Birks, H. J. B., 1986. Numerical zonation, comparison and correlation of Quaternary pollen-stratigraphical data. In Berglund, B. E. (ed.) Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, Chichester: 743–774.

    Google Scholar 

  • Birks, H. J. B., 1995. Quantitative palaeoenvironmental reconstructions. In Maddy D. & J. S. Brew (eds.) Statistical Modelling of Quaternary Science Data, Technical Guide 5. Quaternary Research Association, Cambridge: 161–254.

    Google Scholar 

  • Birks, H. J. B., 1998. Numerical tools in palaeolimnology-progress, potentialities, and problems. J. Paleolimnol. 20: 307–332.

    Article  Google Scholar 

  • Birks, H. J. B. & H. H. Birks, 1980. Quaternary Palaeoecology. Arnold, London, 289 pp.

    Google Scholar 

  • Birks, H. J. B. & A. D. Gordon, 1985. Numerical Methods in Quaternary Pollen Analysis. Academic Press, London, 317 pp.

    Google Scholar 

  • Birks, H. J. B., S. Juggins, A. Lotter & J. P. Smol (eds.), in preparation. Tracking environmental change using lake sediments: Data handling and statistical techniques. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Birks, H. J. B. & J. M. Line, 1992. The use of rarefaction analysis for estimating palynological richness from Quaternary pollen-analytical data. Holocene 2: 1–10.

    Google Scholar 

  • Birks, H. J. B. & A. F. Lotter, 1994. The impact of the Laacher See volcano (11 000 yr B.P.) on terrestrial vegetation and diatoms. J. Paleolimnol. 11: 313–322.

    Article  Google Scholar 

  • Bonnefille, R. & G. Riollet, 1980. Pollens des savanes ďAfrique orientale. Centre National de la Recherche Scientifique, Paris, 140 pp.

    Google Scholar 

  • Bonny, A. P., 1972. A method for determining absolute pollen frequencies in lake sediments. New Phytol. 71: 393–405.

    Google Scholar 

  • Bourgeois, J. C., 1986. A pollen record from the Agassiz Ice Cap, northern Ellesmere Island, Canada. Boreas 15: 345–354.

    Google Scholar 

  • Bradshaw, R. H. W., 1981. Modern pollen-representation factors for woods in south-east England. J. Ecol. 69: 45–70.

    Google Scholar 

  • Bradshaw, R. H. W. & T. Webb, III, 1985. Relationships between contemporary pollen and vegetation data from Wisconsin and Michigan, USA. Ecology 66: 721–737.

    Google Scholar 

  • Broström, A., M. J. Gaillard, M. Ihse & B. Odgaard, 1998. Pollen-landscape relationships in modern analogues of ancient cultural landscapes in southern Sweden—a first step towards quantification of vegetation openness in the past. Veget. Hist. Archaeobot. 7: 189–201.

    Google Scholar 

  • Carrión, J. S., M. Munuera, C. Navarro, F. Burjachs, M. Dupré & M. J. Walker, 1999. The palaeoecological potential of pollen records in caves: the case of Mediterranean Spain. Quat. Sci. Rev. 18: 1061–1073.

    Google Scholar 

  • Carrión, J. S., L. Scott & J. C. Vogel, 1999. Twentieth century changes in montane vegetation in the eastern Free State, South Africa, derived from palynology of hyrax dung middens. J. Quat. Sci. 14: 1–16.

    Google Scholar 

  • Chitty, J., 1995. HF fatality. A.A.S.P. Newsl. 28(1): 14–15.

    Google Scholar 

  • Clark, R. L., 1982. Point count estimation of charcoal in pollen preparations and thin sections of sediments. Pollen Spores 24: 523–535.

    Google Scholar 

  • Coles, G. M., D. D. Gilbertson, C. O. Hunt & R. D. S. Jenkinson, 1989. Taphonomy and the palynology of cave deposits. Cave Sci. 16: 83–89.

    Google Scholar 

  • Colinvaux, P. A., P. E. De Oliveira & E. Moreno, 1999. Amazon Pollen Manual and Atlas. Harwood Academic Publishers, Amsterdam, 332 pp.

    Google Scholar 

  • Crane, P. R., E. M. Friis & K. R. Pedersen, 1995. The origin and early diversification of angiosperms. Nature 374: 27–33.

    Article  Google Scholar 

  • Cwynar, L. C., E. Burden & J. H. McAndrews, 1979. An inexpensive sieving method for concentrating pollen and spores from fine-grained sediments. Can. J. Earth Sci. 16: 1115–1120.

    Google Scholar 

  • Cwynar, L. C. & G. M. MacDonald, 1987. Geographic variation of lodgepole pine in relation to its population history. Am. Nat. 129: 463–469.

    Article  Google Scholar 

  • Davis, M. B., 1965. A method for determination of absolute pollen frequency. In Kummel, B. & D. Raup (eds.) Handbook of Paleontological Techniques. W. H. Freeman, San Francisco: 674–686.

    Google Scholar 

  • Davis, M. B., 1966. Determination of absolute pollen frequency. Ecology 47: 310–311.

    Google Scholar 

  • Davis, M.B., 1976. Pleistocene biogeography of temperate deciduous forests. Geosci. Man 13: 13–26.

    Google Scholar 

  • Davis, M. B., 1981. Outbreaks of forest pathogens in Quaternary history. In Bharadwaj, D. C., Vishnu-Mittre & H. K. Maheshwari (eds.) Fourth International Palynological Conference Proceedings Volume III. Birbal Sahni Institute of Palaeobotany, Lucknow: 216–228.

    Google Scholar 

  • Davis, M. B., 1983. Quaternary history of deciduous forests of eastern North America and Europe. Ann. Missouri Bot. Gard. 70: 550–563.

    Google Scholar 

  • Davis, M. B. & E. S. Deevey, 1964. Pollen accumulation rates: estimates from late-glacial sediment of Rogers Lake. Science 145: 1293–1295.

    Google Scholar 

  • Davis, M. B., K. D. Woods, S. L. Webb & R. P. Futyma, 1986. Dispersal versus climate: expansion of Fagus and Tsuga into the Upper Great Lakes region. Vegetatio 67: 93–103.

    Google Scholar 

  • Duller, A., G. Duller, I. France & H. Lamb, 1999. A pollen image database for evaluation of automated identification systems. Quat. Newsl. 89: 4–9.

    Google Scholar 

  • Erdtman, G., 1934. Über die verwendung von essigsäureanhydrid bei pollenuntersunchungen. Svensk Bot. Tidskr. 28: 354–358.

    Google Scholar 

  • Faegri, K. & J. Iversen, 1989. Textbook of Pollen Analysis (4th ed.). Wiley, Chichester, 328 pp.

    Google Scholar 

  • Faegri, K. & L. van der Piji, 1979. The Principles of Pollination Ecology (3rd ed.). Pergamon, Oxford, 244 pp.

    Google Scholar 

  • France, I., A. W. G. Duller, G. A. T. Duller & H. F. Lamb, 2000. A new approach to automated pollen analysis. Quat. Sci. Rev. 18: 537–546.

    Google Scholar 

  • Fuller, J. L., 1998. Ecological impact of the mid-Holocene hemlock decline in southern Ontario, Canada. Ecology 79: 2337–2351.

    Google Scholar 

  • Funkhouser, J. W. & W. R. Evitt, 1959. Preparation techniques for acid-insoluble microfossils. Micropaleontology 5: 369–375.

    Google Scholar 

  • Glaister, C. G., 2000. Palynology of late Pleistocene marine sediments in north Denmark. Ph. D. thesis, University of Cambridge, 210 pp.

    Google Scholar 

  • Gordon, A. D., 1980. SLOTSEQ: a FORTRAN IV program for comparing two sequences of observations. Comput. Geosci. 6: 7–20.

    Google Scholar 

  • Gordon, A. D. & H. J. B. Birks, 1972. Numerical methods in Quaternary palaeoecology. I. Zonation of pollen diagrams. New Phytol. 71: 961–979.

    Google Scholar 

  • Gray, J., 1965. Extraction techniques. In Kummel, B. & D. Raup (eds.) Handbook of Paleontological Techniques. W. H. Freeman, San Francisco: 530–587.

    Google Scholar 

  • Green, D. G., 1981. Time series and postglacial forest ecology. Quat. Res. 15: 265–277.

    Article  Google Scholar 

  • Green, D. G., 1995. Time and spatial analysis. In Maddy, D. & J. S. Brew (eds.) Statistical Modelling of Quaternary Science Data, Technical Guide 5. Quaternary Research Association, Cambridge: 65–105.

    Google Scholar 

  • Grimm, E. C., 1991–1993. TILIA 2.0. Springfield, Illinois, USA: Illinois State Museum. Software.

    Google Scholar 

  • Grootes, P. M., M. Stuiver, J. W. C. White, S. Johnsen & J. Jouzel, 1993. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366: 552–554.

    Article  Google Scholar 

  • Havinga, A. J., 1964. An investigation into the differential corrosion susceptibility of pollen and spores. Pollen Spores 6: 621–635.

    Google Scholar 

  • Havinga, A. J., 1984. A 20-year experimental investigation into the differential corrosion susceptibility of pollen and spores in various soil types. Pollen Spores 26: 541–558.

    Google Scholar 

  • Hedberg, H. D. (ed.), 1976. International Stratigraphic Guide. John Wiley, New York, 200 pp.

    Google Scholar 

  • Hooghiemstra, H. & B. van Geel, 1998. World list of Quaternary pollen and spore atlases. Rev. Palaeobot. Palynol. 104: 157–182.

    Google Scholar 

  • Howe, S. & T. Webb, III, 1983. Calibrating pollen data in climatic terms: improving the methods. Quat. Sci. Rev. 2: 17–51.

    Article  Google Scholar 

  • Hughes, N. F., 1976. The enigma of angiosperm origins. Cambridge University Press, Cambridge, 242 pp.

    Google Scholar 

  • Iversen, J., 1941. Landnam i Danmarks Stenalder. Danm. Geol. Unders. Række II 66: 68 pp.

    Google Scholar 

  • Iversen, J., 1949. The influence of prehistoric man on vegetation. Danm. Geol. Unders. Række IV 3(6): 25 pp.

    Google Scholar 

  • Jacobson, Jr, G. L. & E. C. Grimm, 1988. Synchrony of rapid change in late-glacial vegetation south of the Laurentide ice sheet. Bulletin of the Buffalo Society of Natural Sciences 33: 31–38.

    Google Scholar 

  • Jacobson, Jr, G. L., T. Webb, III & E. C. Grimm, 1987. Patterns and rates of vegetation change during the deglaciation of eastern North America. In Ruddiman, W. F. & H. E. Wright, Jr (eds.) North America and Adjacent Oceans During the Last Deglaciation, The Geology of North America Volume K-3. Geological Society of America, Boulder, CO: 277–288.

    Google Scholar 

  • Jagudilla-Bulalacao, L., 1997. Pollen Flora of the Philippines, Volume 1. Monographs in Systematic Botany from the National Museum, Philippines. Department of Science and Technology, Special Projects Unit, Technology Application and Promotion Institute, Taguig, Metro Manila, 266 pp.

    Google Scholar 

  • Jemmett, G. & J. A. K. Owen, 1990. Where has all the pollen gone? Rev. Palaeobot. Palynol. 64: 205–211.

    Google Scholar 

  • Langmyhr, F. J. & K. Kringstad, 1966. An investigation of the composition of the precipitates formed by the decomposition of silicate rocks in 38–40% hydrofluoric acid. Anal. Chim. Acta 35: 131–135.

    Google Scholar 

  • Langmyhr, F. J. & S. Sveen, 1965. Decomposability in hydrofluoric acid of the main and some minor and trace minerals of silicate rocks. Anal. Chim. Acta 32: 1–7.

    Google Scholar 

  • Lotter, A. F. & H. J. B. Birks, 1993. The impact of the Laacher See Tephra on terrestrial and aquatic ecosystems in the Black Forest, southern Germany. J. Quat. Sci. 8: 263–276.

    Google Scholar 

  • MacDonald, G. M., 1987. Postglacial development of the subalpine-boreal transition forest of western Canada. J. Ecol. 75: 303–320.

    Google Scholar 

  • Maddy, D. & J. S. Brew (eds.), 1995. Statistical Modelling of Quaternary Science Data, Technical Guide 5. Quaternary Research Association, Cambridge, 271 pp.

    Google Scholar 

  • Magri, D., 1989. Interpreting long-term exponential growth of plant populations in a 250000-year pollen record from Valle di Castiglione (Roma). New Phytol. 112: 123–128.

    Google Scholar 

  • Maher, Jr, L. J., 1972. Nomograms for computing 95% limits of pollen data. Rev. Palaeobot. Palynol. 13: 85–93.

    Google Scholar 

  • Maher, Jr, L. J., 1981. Statistics for microfossil concentration measurements employing samples spiked with marker grains. Rev. Palaeobot. Palynol. 32: 153–191.

    Google Scholar 

  • Markgraf, V. & H. L. D’Antoni, 1980. Pollen flora of Argentina. University of Arizona Press, Tucson, AZ, 208 pp.

    Google Scholar 

  • Martinson, D. G., N. G. Pisias, J. D. Hays, J. Imbrie, T. C. Moore, Jr & N. J. Shackleton, 1987. Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quat. Res. 27: 1–29.

    Article  Google Scholar 

  • Matthews, J., 1969. The assessment of a method for the determination of absolute pollen frequencies. New Phytol. 68: 161–166.

    Google Scholar 

  • McAndrews, J. H., 1984. Pollen analyses of the 1973 ice core from Devon Island Glacier, Canada. Quat. Res. 22: 68–76.

    Article  Google Scholar 

  • McAndrews, J. H., A. A. Berti & G. Norris, 1973. Key to the Quaternary pollen and spores of the Great Lakes region. Life Sciences Miscellaneous Publication, Royal Ontario Museum, Toronto, 61 pp.

    Google Scholar 

  • Moar, N. T, 1993. Pollen Grains of New Zealand Dicotyledonous Plants. Manaaki Whenua Press, Lincoln, New Zealand, 200 pp.

    Google Scholar 

  • Moore, P. D., J. A. Webb & M. E. Collinson, 1991. Pollen Analysis. Blackwell Scientific Publications, Oxford, 216 pp.

    Google Scholar 

  • Mosimann, J. E., 1965. Statistical methods for the pollen analyst: multinomial and negative multinomial techniques. In Kummel, B. & D. Raup (eds.) Handbook of Paleontological Techniques. W. H. Freeman, San Francisco: 636–673.

    Google Scholar 

  • Nakagawa, T., E. Brugiapaglia, G. Digerfeldt, M. Reille, J. L. de Beaulieu & Y. Yasuda, 1998. Densemedia separation as a more efficient pollen extraction method for use with organic sediment/deposit samples: comparison with the conventional method. Boreas 27: 15–24.

    Google Scholar 

  • Petit, J. R., J. Jouzel, D. Raynaud, N. I. Barkov, J. M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Ppin, C. Ritz, E. Saltzman & M. Stievenard, 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399: 429–436.

    Article  Google Scholar 

  • Prentice, I. C., 1980. Multidimensional scaling as a research tool in Quaternary palynology: a review of theory and methods. Rev. Palaeobot. Palynol. 31: 71–104.

    Google Scholar 

  • Prentice, I. C., 1988. Records of vegetation in time and space: the principles of pollen analysis. In Huntley, B. & T. Webb, III (eds.) Vegetation History, Handbook of Vegetation Science 7. Kluwer Academic, Dordrecht: 17–42.

    Google Scholar 

  • Proctor, M., P. Yeo & A. Lack, 1996. The Natural History of Pollination. Collins, London, 479 pp.

    Google Scholar 

  • Punt, W., 1976. The Northwest European Pollen Flora I. Elsevier Scientific, Amsterdam, 145 pp.

    Google Scholar 

  • Punt, W. & S. Blackmore, 1991. The Northwest European Pollen Flora VI. Elsevier Scientific, Amsterdam, 276 pp.

    Google Scholar 

  • Punt, W., S. Blackmore & G. C. S. Clarke, 1988. The Northwest European Pollen Flora V. Elsevier Scientific, Amsterdam, 154 pp.

    Google Scholar 

  • Punt, W., S. Blackmore & P. P. Hoen, 1995. The Northwest European Pollen Flora VII. Elsevier Scientific, Amsterdam, 282 pp.

    Google Scholar 

  • Punt, W., S. Blackmore, S. Nilsson & A. Le Thomas, 1994. Glossary of pollen and spore terminology. LPP Contributions Series No. 1. LPP Foundation, Utrecht, 71 pp.

    Google Scholar 

  • Punt, W. & G. C. S. Clarke, 1980. The Northwest European Pollen Flora II. Elsevier Scientific, Amsterdam, 265 pp.

    Google Scholar 

  • Punt, W. & G. C. S. Clarke, 1981. The Northwest European Pollen Flora III. Elsevier Scientific, Amsterdam, 138 pp.

    Google Scholar 

  • Punt, W. & G. C. S. Clarke, 1984. The Northwest European Pollen Flora IV. Elsevier Scientific, Amsterdam, 369 pp.

    Google Scholar 

  • Reille, M., 1992. Pollen et Spores ďEurope et ďAfrique du Nord. Laboratoire de Botanique Historique et Palynologie, Marseille, 520 pp.

    Google Scholar 

  • Reille, M., 1995. Pollen et Spores ďEurope et ďAfrique du Nord: Supplement 1. Laboratoire de Botanique Historique et Palynologie, Marseille, 327 pp.

    Google Scholar 

  • Reille, M., 1998. Pollen et Spores ďEurope et ďAfrique du Nord: Supplement 2. Laboratoire de Botanique Historique et Palynologie, Marseille, 521 pp.

    Google Scholar 

  • Ritchie, J. C., 1986. Climate change and vegetation response. Vegetatio 67: 65–74.

    Article  Google Scholar 

  • Ritchie, J. C., 1995. Current trends in studies of long-term plant community dynamics. New Phytol. 130: 469–494.

    Google Scholar 

  • Ritchie, J. C. & G. M. MacDonald, 1986. The patterns of post-glacial spread of white spruce. J. Biogeogr. 13: 527–540.

    Google Scholar 

  • Sánchez Goñi, M. F., F. Eynaud, J. L. Turon & N. J. Shackleton, 1999. High resolution palynological record off the Iberian margin: direct land-sea correlation for the Last Interglacial complex. Earth Planet. Sci. Lett. 171: 123–137.

    Google Scholar 

  • Southworth, D., 1990. Exine biochemistry. In Blackmore, S. & R. B. Knox (eds.) Microspores: Evolution and Ontogeny. Academic Press, London: 193–212.

    Google Scholar 

  • Stillman, E. C. & J. R. Flenley, 1996. The needs and prospects for automation in palynology. Quat. Sci. Rev. 15: 1–7.

    Article  Google Scholar 

  • Stuiver, M., P. J. Reimer, E. Bard, J. W. Beck, G. S. Burr, K. A. Hughen, B. Kromer, G. McCormac, J. van der Plicht & M. Spurk, 1998. INTCAL98 radiocarbon age calibration, 24,000-0 cal BP. Radiocarbon 40: 1041–1083.

    Google Scholar 

  • Sugita, S., 1993. A model of pollen source area for an entire lake surface. Quat. Res. 39: 239–244.

    Article  Google Scholar 

  • Sugita, S., 1994. Pollen representation of vegetation in Quaternary sediments: theory and method in patchy vegetation. J. Ecol. 82: 881–897.

    Google Scholar 

  • Sugita, S., M. J. Gaillard & A. Broström, 1999. Landscape openness and pollen records: a simulation approach. Holocene 9: 409–421.

    Article  Google Scholar 

  • Sun, X. J., C. Q. Song, F. Y. Wang & M. R. Sun, 1997. Vegetation history of the Loess Plateau of China during the last 100,000 years based on pollen data. Quat. Int. 37: 25–36.

    Google Scholar 

  • Thompson, R., 1980. Use of the word “influx” in paleolimnological studies. Quat. Res. 14: 269–270.

    Article  Google Scholar 

  • Tinner, W., P. Hubschmid, M. Wehrli, B. Ammann & M. Condera, 1999. Long-term forest fire ecology and dynamics in southern Switzerland, J. Ecol. 87: 273–289.

    Article  Google Scholar 

  • Traverse, A., 1988. Paleopalynology. Unwin Hyman, Boston, MA, 600 pp.

    Google Scholar 

  • Troels-Smith, J., 1955. Karakterisering af lose jordater. Characterization of unconsolidated sediments. Danm. Geol. Unders. Række IV 3(10): 73 pp.

    Google Scholar 

  • Tsukada, M. & S. Sugita, 1982. Late Quaternary dynamics of pollen influx at Mineral Lake, Washington. Bot. Mag., Tokyo 95: 401–418.

    Google Scholar 

  • van der Knaap, W. O., 1989. Past vegetation and reindeer on Edgeoya (Spitsbergen) between c. 7900 and c. 3800 BP, studied by means of peat layers and reindeer faecal pellets. J. Biogeogr. 16: 379–394.

    Google Scholar 

  • von Post, L., 1946. The prospect for pollen analysis in the study of the earth’s climatic history. New Phytol. 45: 193–217.

    Google Scholar 

  • Walanus, A. & D. Nalepka, 1997. Palynological diagram drawing in Polish POLPA1 for windows. INQUA Comm. Study Holocene: Work. gr. data-handl. meth. Newsl. 16: 3.

    Google Scholar 

  • Walker, D. & Y. Chen, 1987. Palynological light on tropical rainforest dynamics. Quat. Sci. Rev. 6: 77–92.

    Google Scholar 

  • Watts, W. A., 1961. Post Atlantic forests in Ireland. Proc. Linn. Soc. Lond. 172: 33–38.

    Google Scholar 

  • Webb, III, T., 1986. Is vegetation in equilibrium with climate? How to interpret late-Quaternary pollen data. Vegetatio 67: 75–91.

    Article  Google Scholar 

  • Welten, M., 1944. Pollenanalytische, stratigraphische und geochronologische Untersuchungen aus dem Faulenseemoos bei Spiez. Veröff. Geobot. Inst. Rübel Zürich 21: 201 pp.

    Google Scholar 

  • Willis, K. J., M. Braun, P. Sümegi & A. Tóth, 1997. Does soil change cause vegetation change or vice versa? A temporal perspective from Hungary. Ecology 78: 740–750.

    Google Scholar 

  • Willis, K. J., A. Kleczkowski, K. M. Briggs & C. A. Gilligan, 1999. The role of sub-Milankovitch climatic forcing in the initiation of the Northern Hemisphere glaciation. Science 285: 568–571.

    Article  Google Scholar 

  • Willis, K. J., A. Kleczkowski & S. J. Crowhurst, 1999. 124,000-year periodicity in terrestrial vegetation change during the late Pliocene epoch. Nature 397: 685–688.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bennett, K.D., Willis, K.J. (2002). Pollen. In: Smol, J.P., Birks, H.J.B., Last, W.M., Bradley, R.S., Alverson, K. (eds) Tracking Environmental Change Using Lake Sediments. Developments in Paleoenvironmental Research, vol 3. Springer, Dordrecht. https://doi.org/10.1007/0-306-47668-1_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-47668-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0681-4

  • Online ISBN: 978-0-306-47668-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics