Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. J. van der Plassche, Integrated Analog-to-Analog and Digital-to-Analog Converters, Kluwer Publishers, Boston, 1994.

    Google Scholar 

  2. M. M. Martins and J. A. S. Dias, “CMOS shunt regulators with bandgap reference for automotive environment”, IEE Proceedings Circuits Devices and Systems, vol. 141, pp. 157–161, June 1994.

    Article  Google Scholar 

  3. H. Tanaka et al., “Sub-1-μA dynamic reference voltage generator for battery operated DRAMs”, IEEE Journal of Solid-State Circuits, vol. SC-29, no. 4, pp. 448–453, April 1994.

    Google Scholar 

  4. D. F. Hilbiber, “A new semiconductor voltage standard”, ISSCC Digest Technical Papers, vol. 7, pp. 32–33, 1964.

    Google Scholar 

  5. R. J. Widlar, “Some circuit design techniques for linear integrated circuits”, IEEE Transactions on Circuit Theory, vol. CT-12, no. 4, pp. 586–590, December 1965.

    Google Scholar 

  6. K. K. Kuijk, “A precision reference voltage source”, IEEE Journal of Solid-State Circuits, vol. SC-8, no. 3, pp. 222–226, June 1973.

    Google Scholar 

  7. R. J. Widlar, “Low voltage techniques”, IEEE Journal of Solid-State Circuits, vol. SC-13, no. 6, pp. 838–846, December 1978.

    Google Scholar 

  8. G. C. M. Meijer, P. C. Schmale and K. van Zalinge, “A new curvature-corrected bandgap reference”, IEEE Journal of Solid-State Circuits, vol. SC-17, no. 6, pp. 1139–1143, December 1982.

    Google Scholar 

  9. I. Lee, G. Kim and W. Kim, “Exponential curvature-compensated BiCMOS bandgap references”, IEEE Journal of Solid-State Circuits, vol. SC-29, no. 11, pp. 1396–1403, November 1994.

    Google Scholar 

  10. E. A. Vittoz and O. Neyroud, “A low-voltage CMOS bandgap reference”, IEEE Journal of Solid-State Circuits, vol. SC-14, no. 3, pp. 573–577, June 1979.

    Google Scholar 

  11. G. Tzanateas, C. A. T. Salama and Y. P. Tsividis, “A CMOS bandgap voltage reference”, IEEE Journal of Solid-State Circuits, vol. SC-14, no. 3, pp. 655–657, June 1979.

    Google Scholar 

  12. B. S. Song and P. R. Gray, “A precision curvature-compensated CMOS bandgap reference”, IEEE Journal of Solid-State Circuits, vol. SC-18, no. 6, pp. 634–643, December 1983.

    Google Scholar 

  13. S. L. Lin and C. A. T. Salama, “A Vbe(T) model with the application to bandgap reference design”, IEEE Journal of Solid-State Circuits, vol. SC-20, no. 6, pp. 1283–1285, December 1985.

    Google Scholar 

  14. O. Salminen and K. Halonen, “The higher order temperature compensation of bandgap references”, Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 10–13, May 1992.

    Google Scholar 

  15. E. A. Vittoz, “MOS transistors operated in lateral bipolar mode and their application in CMOS technology”, IEEE Journal of Solid-State Circuits, vol. SC-18, no. 3, pp. 273–279, June 1983.

    Google Scholar 

  16. M. G. R. Degrauwe et al., “CMOS voltage references using lateral bipolar transistors”, IEEE Journal of Solid-State Circuits, vol. SC-20, no. 6, pp. 1151–1156, December 1985.

    Google Scholar 

  17. H. J. Oguey and B. Gerber, “MOS voltage reference based on polysilicon gate work function difference”, IEEE Journal of Solid-State Circuits, vol. SC-15, no. 3, pp. 264–269, June 1980.

    Google Scholar 

  18. G. C. M. Meijer, “Bandgap references”, in: J. H. Huijsing et al. (eds), Analog Circuit Design, Kluwer, Dordrecht, 1995, pp. 243–268.

    Google Scholar 

  19. Y. P. Tsividis, “Accurate analysis of temperature effects in IC-VBE characteristics with application to bandgap reference sources”, IEEE Journal of Solid-State Circuits, vol. SC-15, no. 6, pp. 1076–1084, December 1980.

    Google Scholar 

  20. J. W. Slotboom and H. C. de Graaf, “Bandgap narrowing in silicon bipolar transistors”, Solid-State Electronics, vol. 19, pp. 857–862, October 1976.

    Article  Google Scholar 

  21. A. van Staveren, “Structured electronic design of high-performance low-voltage low-power references”, Ph.D. thesis Delft University of Technology, Delft University Press, ISBN 90-407-1448-7, May 1997.

    Google Scholar 

  22. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors”, Physica, vol. 34, pp. 149–154, 1967.

    Article  Google Scholar 

  23. MicroSim Corporation, “Manual Pspice 4.05”.

    Google Scholar 

  24. I. E. Getrue, Modeling the Bipolar Transistor, Elsevier, New York, 1978.

    Google Scholar 

  25. L. K. Nanver, E. J. G. Goudena and H. W. van Zeijl, “DIMES-01, a baseline BIFET process for smart sensor experimentation”, Sensors and Actuators Physical, vol. 36, no. 2, pp. 139–147, 1993.

    Google Scholar 

  26. V. I. Anisimov et al., “Circuit design for low-power reference voltage sources”, Telecommunications and Radio Engineering, Part 1, vol. 48, no. 1, pp. 11–17, 1993.

    MathSciNet  Google Scholar 

  27. E. H. Nordholt, Design of High-Performance Negative-Feedback Amplifiers, Elsevier, Amsterdam, 1983.

    Google Scholar 

  28. A. P. Brokaw, “A simple three-terminal IC bandgap reference”, IEEE Journal of Solid-State Circuits, vol. SC-9, no. 6, pp. 388–393, December 1974.

    Google Scholar 

  29. A. van Staveren, C.J.M. Verhoeven and A.H.M. van Roermund, “The design of low-noise bandgap references”, IEEE Transactions on Circuits and Systems, vol. 43, no. 4, pp. 290–300, April 1996.

    Google Scholar 

  30. A. van Staveren, “Chapter 5, Integrable DC sources and referenes”, in: W. A. Serdijn, C. J. M. Verhoeven and A. H. M. van Roermund (eds), Analog IC Techniques for Low-Voltage Low-Power Electronics, Delft University Press, 1995.

    Google Scholar 

  31. A. van Staveren, J. van Velzen, C. J. M. Verhoeven and A. H. M. van Roermund, “An integratable second-order compensated bandgap reference for 1 V supply”, Analog Integrated Circuits and Signal Processing, vol. 8, pp. 69–81, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

van Staveren, A., Kouwenhoven, M.H.L., Serdijn, W.A., Verhoeven, C.J.M. (2002). Bandgap Reference Design. In: Toumazou, C., Moschytz, G., Gilbert, B., Kathiresan, G. (eds) Trade-Offs in Analog Circuit Design. Springer, Boston, MA. https://doi.org/10.1007/0-306-47673-8_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-47673-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7037-2

  • Online ISBN: 978-0-306-47673-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics