Skip to main content

Sensitivity Analysis of Nested Photochemical Simulations

  • Chapter
Air Pollution Modeling and Its Application XV

Conclusions

It is apparent that the evolution of the concentration fields, and thus, their predictability using a numerical model, is strongly influenced by the uncertainty in boundary concentration fields and the emission inventories. In this work, we applied an automatic differentiation tool (ADIFOR) to investigate the sensitivity of model outputs with respect to perturbations in the boundary conditions of 25 species and emission rates of 10 species. Then, we computed the relative importance of the most important perturbations in the system and in O3 fields. The inserted perturbations had a magnitude similar to observational uncertainties.

The tangent linear model solutions, which describe the evolution of perturbations along trajectories of a time-dependent non-linear base state, represent well the corresponding non-linear perturbation fields accurately for the modelled period, which included the 98%tile O3 concentration. This type of sensitivity analysis identifies, for the same change in each variable, which variable may include a larger forecast error at some specific time. Although this sensitivity information does not include non-linear effects, it does provide the fundamental characteristics of the changes in solution behaviour and forecast error. All simulations demonstrate that the highest sensitivity in an atmospheric system arises from perturbations at the boundary conditions of O3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bischof C., P. Khademi, A. Mauer and A. Carle (1996): ADIFOR 2.0-automatic differentiation of Fortran 77 programs, IEEE Computational Science & Engineering, 3, 18–32

    Article  Google Scholar 

  • Bischof C. (1994): Automatic differentiation, tangent linear models and pseudo-adjoints, High-Performance Computing in the Geosciences, Kluwer Academic Publishers, 462, 59–80.

    Google Scholar 

  • Bischof C., A. Carle, G. Corliss, A. Griewank and P. Hovland (1992): ADIFOR-Generating derivative codes from Fortran programs, Scientific Programming, 1, 11–29.

    Google Scholar 

  • Bischof C., A. Carle, P. Hovland, P. Khademi and A. Mauer (1998): ADIFOR 2.0 User’s Guide, Mathematics and Computer Science Division, Argonne National Laboratory, Technical Memorandum 192.

    Google Scholar 

  • Carmichael G.R., A. Sandu and F.A. Potra (1997): Sensitivity analysis for atmospheric chemistry models via automatic differentiation, Atmospheric Environment, 31, 475–489.

    Article  CAS  Google Scholar 

  • Derwent R.G. (1993): United Kingdom Photochemical Oxidants Review Group, Ozone in the United Kingdom, prepared at the request of the Air Quality Division, Department of the Environment, London.

    Google Scholar 

  • Environ (1998): User’s Guide for Comprehensive Air Quality Model With Extensions (CAMx) 2.0, 123p.

    Google Scholar 

  • Errico R., T. Vukicevic and K. Raeder (1993): Examination of the accuracy of a tangent linear model, Tellus, 45A, 462–477 and, 45A, 539–557.

    Google Scholar 

  • Griewank A. (1989): On Automatic Differentiation, Mathematical Programming: Recent Developments and Applications, Kluwer Academic Press, 83–108.

    Google Scholar 

  • Hanna S., J. Chang and M. Fernau (1998): Monte Carlo estimates of uncertainties in predictions by a photochemical grid model (UAM-IV) due to uncertainties in input variables, Atmospheric Environment, 32, 21, 3619–3628.

    Article  CAS  Google Scholar 

  • Horwedel J., R. Raridon and R. Wright (1992): Automated Sensitivity Analysis of an Atmospheric Dispersion Model, Atmospheric Environment, 26A, 1643–1649.

    CAS  Google Scholar 

  • Hwang D., D.W. Byun and M.T. Odman (1997): An automatic differentiation technique for sensitivity analysis of numerical advection schemes in air quality models, Atm. Envir., 31, 879–888.

    CAS  Google Scholar 

  • Kioutsioukis I., A. (2001): Sensitivity Analysis of 3D Air Quality Models, PhD thesis, University of Thessaloniki, Greece.

    Google Scholar 

  • Park S.K. and K.K. Droegemeier (1999): Sensitivity analysis of a moist 1D Eulerian cloud model using automatic differentiation, Monthly Weather Review, 127, 2180–2196.

    Article  Google Scholar 

  • Park S.K. and K.K. Droegemeier (2000): Sensitivity analysis of a 3D convective storm-Implications for variational data assimilation and forecast error, Monthy Weather Review, 128, 140–159.

    Google Scholar 

  • Park S.K. and K.K. Droemegeier (1997): Validity of the tangent linear approximation in a moist convective cloud model, Monthly Weather Review, 125, 3320–3340.

    Article  Google Scholar 

  • Peters L., C. Berkowitz, G. Carmichael, R. Easter, G. Fairweather, S. Ghan, J. Hales, R. Leung, W. Pennell, F. Potra, R. Saylor and T. Tsang (1995): The current state and future direction of direction models in simulating the tropospheric chemistry and transport of trace species-A review, Atmospheric Environment, 29, 2, 189–222.

    CAS  Google Scholar 

  • Pielke R. (1998): The need to assess uncertainty in Air Quality Evaluations, Atmospheric Environment, 32, 1467–1468.

    Article  CAS  Google Scholar 

  • Rall L. (1981): Automatic Differentiation-Techniques and Applications, Lectrure Notes in Computer Science, Vol. 120, Springer-Verlag, Berlin.

    Google Scholar 

  • Saltelli A., K. Chan and E. Scott (2000): Sensitivity Analysis, John Wiley & Sons, 475p.

    Google Scholar 

  • Silibello C., G. Calori, G. Brusasca, G. Catenacci and G. Finzi (1998): Application of a photochemical grid model to Milan metropolitan area, Atmospheric Environment, 32, 2025–2038.

    Article  CAS  Google Scholar 

  • Skouloudis A.N. (2001): The Auto-Oil II Programme-Air Quality Report, Version 7.2, 31 March, EUR Report 19725 EN.

    Google Scholar 

  • Vautard R. (2000): Real-Time validation of a forecasting chemistry transport model, Proc. of the EUMENET Workshop on Ground-Level Ozone Forecasting, Langen, Germany.

    Google Scholar 

  • Volta M. and G. Finzi (1997): Photochemical pollution in Northern Italy. Emission inventory analysis and processing. Environmental Research Forum, 7–8, 416–419.

    Google Scholar 

  • Vukicevic T. (1991): Nonlinear and linear evolution of initial forecast errors, Monthly Weather Review, 119, 1602–1611.

    Article  Google Scholar 

  • Vukicevic T. and R.M. Errico (1993): Linearization and adjoint of parameterized moist adiabatic processes, Tellus, 45A, 493–510.

    Google Scholar 

  • Winner D.M., G.R. Cass and R.A. Harley (1995): Effect of alternative boundary conditions on predicted ozone control strategy performance: A case study in Los Angeles area, Atmospheric Environment 29, 3451–3464.

    Article  CAS  Google Scholar 

  • Ziomas I. (1998): The Mediterranean Campaign of Photochemical Tracers-Transport and Chemical Evolution (MEDCAPHOT-TRACE): An Outline, Atmospheric Environment, 32, 2045–2053.

    CAS  Google Scholar 

  • Ziomas I., P. Tzoumaka, D. Balis, D. Melas, C. Zerefos and O. Klemm (1998): Ozone episodes in Athens, Greece. A modelling approach using data from the MEDCAPHOT-TRACE, Atmospheric Environment, 32, 2313–2321.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kioutsioukis, I.A., Skouloudis, A.N. (2004). Sensitivity Analysis of Nested Photochemical Simulations. In: Borrego, C., Schayes, G. (eds) Air Pollution Modeling and Its Application XV. Springer, Boston, MA. https://doi.org/10.1007/0-306-47813-7_34

Download citation

  • DOI: https://doi.org/10.1007/0-306-47813-7_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-47294-7

  • Online ISBN: 978-0-306-47813-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics