Skip to main content

Cellular Signaling by Sphingosine and Sphingosine 1-Phosphate

Their opposing roles in apoptosis

  • Chapter
Phospholipid Metabolism in Apoptosis

Part of the book series: Subcellular Biochemistry ((SCBI,volume 36))

Conclusion

S1P is involved in a variety of physiological and pathophysiological processes that involve proliferation and migration (Pyne and Pyne, 2000). These include tumor invasion, angiogenesis, atherosclerosis and differentiation. Anti-cancer therapies could include the use of EDG receptor sub-type-specific antagonists or EDG receptor knockout. The inhibition of SPHK is also a promising approach. For instance, DMS has been used to induce apoptosis of solid tumors (Park et al. 1994; Sakakura et al., 1997). Novel SPHK inhibitors with higher potency (De Jonge et al., 1999) are also being developed which may have improved clinical efficacy. Conversely, activation of SPHK or inhibition of S1P phosphatase and S1P lyase could be used to protect against apoptosis. This may be of particular relevance to neurological disorders, such as Alzheimer’s and Parkinson’s disease, which are associated with de-regulated apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alderton, F.A., Darroch, P.I., Sambi, B., McKie, A., Pyne, N.J. and Pyne, S., 2001, G-protein-coupled receptor signaling to p42/p44 mitogen-activated protein kinase is attenuated by lipid phosphate phosphatases 1, 1a and 2 in HEK 293 cells, J. Biol. Chem. 276: 13452–13460.

    PubMed  CAS  Google Scholar 

  • Alemany, R., Sichelschmidt, B., Meyer zu Heringdorf, D.M., Lass, H., Van Koppen, C.J. and Jakobs, K.H., 2000, Stimulation of sphingosine 1-phosphate formation by the P2Y2 receptor in HL-60 cells: Ca2+ requirement and implication in receptor-mediated Ca2+ mobilization, but not MAP kinase activation, Mol. Pharmacol. 58: 491–497.

    PubMed  CAS  Google Scholar 

  • Alessenko, A.V., 2000, The role of sphingomyelin cycle metabolites in transduction of signals of cell proliferation, differentiation and death, Memb. Cell Biol. 13: 303–320.

    CAS  Google Scholar 

  • An, S., Bleu, T. and Zheng, Y., 1999, Transduction of intracellular calcium signals through G protein-mediated activation of phospholipase C by recombinant sphingosine 1-phosphate receptors. Mol. Pharmacol. 55: 787–794.

    PubMed  CAS  Google Scholar 

  • An, S., Goetzl, E.J. and Lee, H., 1998, Signaling mechanisms and molecular characteristics of G protein-coupled receptors for lysophosphatidic acid and sphingosine 1-phosphate. J. Cell. Biochem. 30/31: 147–157.

    Google Scholar 

  • An, S., Zheng, Y. and Bleu, T., 2000, Sphingosine 1-phosphate-induced cell proliferation, survival and related events mediated by G protein-coupled receptors EDG3 and EDG5. J, Biol. Chem. 275: 288–296.

    CAS  Google Scholar 

  • Ancellin, N. and Hla, T., 1999, Differential pharmacological properties and signal transduction of the sphingosine 1-phosphate receptors EDG-1, EDG-3, and EDG-5. J. Biol. Chem. 274: 18997–19002.

    Article  PubMed  CAS  Google Scholar 

  • Auge, N., Nikolova-Karakahian, M., Carpentier, S., Parthasarathy, S., Negre-Salvayre, A., Salvayre, A., Merrill, Jr., A.H. and Levade, T., 1999, Role of sphingosine 1-phosphate in the rnitogenesis induced by oxidized low density lipoprotein in smooth muscle cells via activation of sphingomyelinase, ceramidase and sphingosine kinase, J. Biol. Chem. 274: 21533–21538.

    Article  PubMed  CAS  Google Scholar 

  • Ayar, A., Thatcher, N.M., Zehavi, U., Trentham, D.R. and Scott, R.H., 1998, Mobilization of intracellular calcium by intracellular flash photolysis of caged dihydrosphingosine in cultured neonatal rat sensory neurones, Acta Biochim. Polon. 45: 311–326.

    PubMed  CAS  Google Scholar 

  • Blakesley, V.A., Beitner-Johnson, D., Van Brocklyn, J.R., Rani, S., Shen-Orr, Z., Stannard, B., Spiegel, S. and LeRoith, D., 1997, Sphingosine 1-phosphate stimulates tyrosine phosphorylation of Crk. J. Biol Chem. 272: 16211–16215.

    Article  PubMed  CAS  Google Scholar 

  • Brindley, D.N. and Waggoner, D.W., 1998, Mammalian lipid phosphate phosphohydrolases, J. Biol. Chem. 273: 24261–24284.

    Article  Google Scholar 

  • Buehrer, B.M., Bardes, E.S and Bell, R.M., 1996, Protein kinase C-dependent regulation of human erthyroleukemia (HEL) cell sphingosine kinase activity, Biochim. Biophys. Acta 1303: 233–242.

    PubMed  Google Scholar 

  • Buhl, A.M., Johnson, N.L., Dhanasekaran, N. and Johnson, G.L., 1995, 12 and 13 stimulate Rho-dependent stress fibre formation and focal adhesion assembly, J. Biol. Chem. 270: 24631–24634.

    PubMed  CAS  Google Scholar 

  • Chmura, S.J., Nodzenski, E., Crane, M.A., Virudachalam, S., Hallahan, D.E., Weichselbaum, R.R. and Quintans, J., 1996, Cross-talk between ceramide and PKC activity in the control of apoptosis in WEHI-231, Adv. Exp. Med. 406: 39–55.

    CAS  Google Scholar 

  • Choi, O.H., Kim, J.H. and Kinet, J.P., 1996, Calcium mobilisation via sphingosine kinase in signaling by the FcεRI antigen receptor, Nature (London) 380: 634–636.

    CAS  Google Scholar 

  • Coroneos, E., Martinez, M., McKenna, S. and Kester, M., 1995, Differential regulation of sphingomyelinase and ceramidase activities by growth factors and cytokines. Implications for cellular proliferation and differentiation, J. Biol. Chem 270: 23305–23309.

    PubMed  CAS  Google Scholar 

  • Coroneos, E., Wang, Y., Panuska, J.R., Temepleton, D.J. and Kester, M., 1996, Sphingolipid metabolites differentially regulate extracellular signal-regulated kinase and stress-activated protein kinase cascades, Biochem. J. 316: 13–17.

    PubMed  CAS  Google Scholar 

  • Cuvillier, O., Nava, V.E., Murthy, S.K., Edsall, L.C., Levade, T., Milstien, S. and Spiegel, S., 2001, Sphingosine generation, cytochrome c release, and activation of caspase-7 in doxorubicin-induced apoptosis of MCF7 breast adenocarcinoma cells, Cell Death Differ 8: 162–171.

    Article  PubMed  CAS  Google Scholar 

  • Cuvillier, O., Pirianov, G., Kleuser, B., Vanek, P.G., Coso, O.A., Gutkind, S. and Spiegel, S., 1996, Suppression of ceramide-mediated programmed cell death by sphingosine 1-phosphate, Nature (London) 381: 800–803.

    Article  CAS  Google Scholar 

  • Cuvillier, O., Rosenthal, D.S., Smulson, M.E. and Spiegel, S., 1998, Sphingosine 1-phosphate inhibits activation of caspases that cleave poly(ADP-ribose)polymerase and lamins during Fas-and ceramide-mediated apoptosis in jurkat T lymphocytes, J. Biol. Chem. 273: 2910–2916.

    Article  PubMed  CAS  Google Scholar 

  • Davaille, J., Gallois, C., Habib, A., Li, L., Mallat, A., Tao, J., Levade, T. and Lotersztajn, S., 2000, Antiproliferative properties of sphingosine 1-phosphate in hepatic myofibroblasts: a cyclooxygenase-2-mediated pathway, J. Biol. Chem. 275: 34628–34633.

    Article  PubMed  CAS  Google Scholar 

  • De Cuester, P., Mannaerts, G.P. and Van Veldhoven, P.P., 1995, Identification and subcellular localization of sphinganine phosphatases in rat liver, Biochem. J. 311: 139–146.

    Google Scholar 

  • De Jonge, S., Van Overmeire, I., Poulton, S., Hendrix, J., Busson, R., Van Calenbergh, S., De Keukeleire, D., Spiegel, S. & Herdewijn, P., 1999, Structure-activity relationship of shortchain sphingoid bases as inhibitors of sphingosine kinase, Bioorg. Med. Chem. Lett. 9: 3175–3180.

    Google Scholar 

  • Durieux, M.E., Carlisle, S.J., Salafranca, M.N. and Lynch, K.R., 1993, Responses to sphingosine-1-phosphate in X. laevis oocytes: Similarities with lysophosphatidic acid signaling, Am. J. Physiol. 264: C1360–C1364.

    PubMed  CAS  Google Scholar 

  • Edsall, L.C. and Spiegel. S., 1999, Enzymatic measurement of sphingosine 1-phosphate, Anal. Biochem. 272: 80–86.

    Article  PubMed  CAS  Google Scholar 

  • Edsall, L.C., Cuvillier, O., Twitty, S., Spiegel, S. and Milstien, S., 2001, Sphingosine kinase expression regulates apoptosis and caspase activation in PC12 cells, J. Neurochem. 76: 1573–1584.

    Article  PubMed  CAS  Google Scholar 

  • Edsall, L.C., Pirianov, G.G. and Spiegel, S., 1997, Involvement of sphingosine 1-phosphate in nerve growth factor-mediated neuronal survival and differentiation, J. Neurosci. 17: 6952–6960.

    PubMed  CAS  Google Scholar 

  • El Bawab, S., Birbes, H., Roddy, P., Szulc, Z.M., Bielawska, A. and Hannun, Y.A., 2001, Biochemical characterization of the reverse activity of rat brain ceramidase. a CoA-independent and fumonisin b1-insensitive ceramide synthase, J. Biol. Chem. 276: 16758–16766.

    PubMed  Google Scholar 

  • El Bawab, S., Roddy, P., Qian, T., Bielawska, A., Lemasters, J.J. and Hannun, Y.A., 2000, Molecular cloning and characterization of a human mitochondrial ceramidase. J. Biol. Chem. 275: 21508–21513.

    PubMed  Google Scholar 

  • Ghosh, T.K., Bian, J. and Gill, D.L., 1994, Sphingosine 1-phosphate generated in the endoplasmic reticulum membrane activates release of stored calcium, J. Biol. Chem. 269: 22628–22635.

    PubMed  CAS  Google Scholar 

  • Glickman, M., Malek, R.L., Kwitek-Black, A.E., Jacob, H.J. and Lee, N.H., 1999, Molecular cloning, tissue-specific expression, and chromosomal localization of a novel nerve growth factor-regulated G-protein-coupled receptor, nrg-1, Mol. Cell. Neurosci. 14: 141–152.

    Article  PubMed  CAS  Google Scholar 

  • Goetzl, E.J., Kong, Y. and Mei, B., 1999, Lysophosphatidic acid and sphingosine 1-phosphate protection of T cells from apoptosis in association with suppression of Bax, J. Immunol. 162: 2049–2056.

    PubMed  CAS  Google Scholar 

  • Gonda, K., Okamoto, H., Takuwa, N., Yatomi, Y., Okazaki, H., Sakura, T., Kimura, S., Sillard, R., Harii, K. and Takuwa, Y., 1999, The novel sphingosine 1-phosphate receptor AGR16 is coupled via pertussis toxin-sensitive and-insensitive G-proteins to multiple signaling pathways, Biochem. J. 337: 67–75.

    Article  PubMed  CAS  Google Scholar 

  • Graler, M.H., Bernhardt, G. and Lipp, M., 1998, A lymphoid tissue-specific receptor, EDG6, with potential immune modulatory functions mediated by extracellular lysophospholipids, Genomics 53: 164–169.

    Article  PubMed  CAS  Google Scholar 

  • Guo, C., Zheng, C., Martin-Padura, I., Bian, Z.C. and Guan J-L., 1998, Differential stimulation of proline-rich tyrosine kinase 2 and mitogen-activated protein kinase by sphingosine 1-phosphate. Eur. J. Biochem. 257: 403–408.

    Article  PubMed  CAS  Google Scholar 

  • Hannun, Y.A. and Bell, R.M., 1989, Functions of sphingolipids and sphingolipid breakdown products in cellular regulation, Science 243: 500–507.

    PubMed  CAS  Google Scholar 

  • Hida, H., Nagano, S., Takeda, M. and Soliven, B., 1999, Regulation of mitogen-activated protein kinases by sphingolipid products in oligodendrocytes, J. Neurosci. 19: 7458–7467.

    PubMed  CAS  Google Scholar 

  • Hla, T. and Macaig, T., 1990, An abundant transcript induced in differentiating human endothelial cells encodes a polypeptide with structural similarities to G-protein-coupled receptors, J. Biol. Chem. 265: 9308–9313.

    PubMed  CAS  Google Scholar 

  • Hobson, J.P., Rosenfeldt, H.M., Barak, L.S., Olivera, A., Poulton, S., Caron, M., Milstien, S. and Spiegel, S., 2001, Role of sphingosine 1-phosphate receptor EDG1 in PDGF-induced cell motility, Science 291: 1800–1803.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann, K. and Dixit, V.M., 1998, Ceramide in apoptosis — Does it really matter?, Trends Biochem. Sci. 23: 374–377.

    PubMed  CAS  Google Scholar 

  • Huang, W-C. and Chueh, S-H., 1996, Calcium mobilization from the intracellular mitochondrial and non-mitochondrial stores of the rat cerebellum, Brain Res. 18: 151–158.

    Google Scholar 

  • Hung, W-C. and Chuang, L-Y., 1996, Induction of apoptosis by sphingosine 1-phosphate in human hepatoma cells is associated with increased expression of bax gene product. Biochim. Biophys. Res. Comm. 229: 11–15.

    Article  CAS  Google Scholar 

  • Igarashi, Y. and Yatomi, Y., 1998, Sphingosine 1-phosphate is a blood constituent released from activated platelets, possible playing a variety of physiological and pathophysiological roles. Acta Biochim. Pol. 45: 299–309.

    PubMed  CAS  Google Scholar 

  • Igarashi, Y., Hakomori, S., Toyokuni, T., Dean, B., Fujita, S., Sugimoto, M., Ogawa, T., El-Ghendy, K. and Racker E., 1989, Effect of chemically well-defined sphingosine and its N-methyl derivatives on protein kinase C and src kinase activities, Biochem. 28: 6796–6800.

    CAS  Google Scholar 

  • Im, D-S., Heise, C.E., Ancellin. N., O’Dowd, B.F., Shei, G-J., Heavens, R.P., Rigby, M.R., Hla, T., Mandala, S., McAllister, G., George, S.R. and Lynch, K.R., 2000, Characterization of a novel sphingosine 1-phosphate receptor, EDG8, J. Biol. Chem. 275: 14281–14286.

    CAS  Google Scholar 

  • Jarvis, W.D., Fornari Jr, F.A., Auer, K.L., Freemerman, A.J., Szabo, E., Birrer, M.J., Johnson, C.R., Barbour, S.E., Dent, P. and Grant, S., 1997, Coordinate regulation of stress-and mitogens-activated protein kinases in the apoptotic actions of ceramide and sphingosine, Mol. Pharmacol. 52: 935–947.

    PubMed  CAS  Google Scholar 

  • Jarvis, W.D., Fornari Jr, F.A., Traylor, R.S., Martin, H.A., Kramer, L.B., Erukulla. R.K., Bittman, R. and Grant, S., 1996, Induction of apoptosis and potentiation of ceramide-mediated cytotoxicity by sphingoid bases in human myeloid leukaemia cells, J. Biol. Chem. 271: 8275–8284.

    PubMed  CAS  Google Scholar 

  • King, C.C., Zenke, F.T., Dawson, P.E., Dutil, E.M., Newton, A.C., Hemmings, B.A. and Bokoch, G.M., 2000, Sphingosine is a novel activator of 3-phosphoinositide-dependent kinase 1, J. Biol. Chem. 275: 18108–18113.

    PubMed  CAS  Google Scholar 

  • Kleuser, B., Cuvillier, O. and Spiegel, S., 1998, 1α,25-Dihydroxyvitamin D3 inhibits programmed cell death in HL60 cells by activation of sphingosine kinase, Cancer Res. 58: 1817–1824.

    PubMed  CAS  Google Scholar 

  • Koch, J., Gartner, S., Li, C.M., Quintern, L.E., Bernardo, K., Levran, O., Schnabel, D., Desnick, R.J., Schuchman, E.H. and Sandhoff, K., 1996, Molecular cloning and characterization of a full-length complementary DNA encoding human acid ceramidase. Identification of the first molecular lesion causing Farber disease, J. Biol. Chem. 271: 33110–33115.

    PubMed  CAS  Google Scholar 

  • Kohama, T., Olivera, A., Edsall, L., Nagiec, M.M., Dickson, R. and Spiegel, S., 1998, Molecular cloning and functional characterization of murine sphingosine kinase, J. Biol. Chem. 273: 23722–23728.

    Article  PubMed  CAS  Google Scholar 

  • Kolesnick, R. and Hannun, Y.A., 1999, Ceramide and apoptosis, Trends Biochem. Sci. 24: 224–225.

    Article  PubMed  CAS  Google Scholar 

  • Kon, J., Sato, K., Watanabe, T., Tomura, H., Kuwabara, A., Kimura, T., Tamama, K-I., Ishizuka, T., Murata, N., Kanda, T., Kobayashi, I., Ohta, H., Ui, M. and Okajima, F., 1999, Comparison of intrinsic activities of the putative sphingosine 1-phosphate receptor subtypes to regulate several signaling pathways in their cDNA-transfected Chinese hamster ovary cells. J. Biol. Chem. 274: 23940–23947.

    Article  PubMed  CAS  Google Scholar 

  • Kozasa, T., Jiang, X., Hart, M.J., Sternweiss, P.M., Singer, W.D., Gilman, A.G., Bollag, G. and Sternweis, P.C., 1998, p115 RhoGEF, a GTPase activating protein for 12 and 13 Science 280: 2109–2111.

    Article  PubMed  CAS  Google Scholar 

  • Kozawa, O., Kawamura, H, and Uematsu, T., 2000a, Sphingosine 1-phosphate amplifies phosphoinositide hydrolysis stimulated by prostaglandin F2α in osteoblasts: involvement of p38 MAP kinase, Prostaglandins Leukot. Essent. Fatty Acids 62: 355–359.

    Article  CAS  Google Scholar 

  • Kozawa, O., Kawamura, H., Matsuno, H. and Uematsu, T., 2000b, p38 MAP kinase is involved in the signaling of sphingosine in osteoblasts: sphingosine inhibits prostaglandin F2α-induced phoshoinositide hydrolysis, Cell Signal 12: 447–450.

    PubMed  CAS  Google Scholar 

  • Kozawa, O., Niwa, M., Matsuno, H., Tokuda, H., Miwa, M., Ito, H., Kato, K. & Uematsu, T., 1999a, Sphingosine 1-phosphate induces heat shock protein 27 via p38 mitogen-activated protein kinase activation in osteoblasts, J. Bone. Min. Res. 14: 1761–1767.

    CAS  Google Scholar 

  • Kozawa, O., Tanabe, K., Ito, H., Matsuno, H., Niwa, M., Kato, K. and Uematsu, T., 1999b, Sphingosine 1-phosphate regulates heat shock protein 27 induction by a p38 MAP kinase-dependent mechanism in aortic smooth muscle cells, Exp. Cell Res. 250: 376–380.

    Article  PubMed  CAS  Google Scholar 

  • Kozawa, O., Yamamoto, T., Tanabe, K., Akamatsu, S., Dohi, S. and Uematsu, T., 2000, Enhancement by sphingosine 1-phosphate in vasopressin-induced phosphoinositide hydrolysis in aortic smooth muscle cell: involvement of p38 MAP kinase, J. Cell. Biochem. 18: 46–52.

    Google Scholar 

  • Kwon, Y-G., Min, J-K., Kim, K-M., Lee, D-J., Billiar, T.R. and Kim, Y-M., 2001, Sphingosine 1-phosphate protects human umbilical vein endothelial cells from serum-deprived apoptosis by nitric oxide production, J. Biol. Chem. 276: 10627–10633.

    PubMed  CAS  Google Scholar 

  • Lavie, Y. and Liscovitch, M., 1990, Activation of phospholipase D by sphingoid bases in NG108-15 neural-derived cells, J. Biol. Chem. 265: 3868–3872.

    PubMed  CAS  Google Scholar 

  • Lee, M-J., Van Brocklyn, J.R., Thangada, S., Liu, C.H., Hand, A.R., Menzeleev, R., Spiegel, S. and Hla, T., 1996, Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279: 1552–1555.

    Google Scholar 

  • Liu, H., Sugiura, M., Nava, V.E., Edsall, L.C., Kono, K., Poulton, S., Milstien, S., Kohama, T. and Spiegel, S., 2000, Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform, J. Biol. Chem. 275: 19513–19520.

    PubMed  CAS  Google Scholar 

  • Lutjohann, J., Spiess, A.N. and Gercken, G., 1998, Agonist-stimulated alveolar macrophages: apoptosis and phospholipid signaling, Toxicol. Lett. 96–97: 59–67.

    PubMed  Google Scholar 

  • Macfarlane, D.E. and O’Donnell, P.S., 1993, Phorbol ester induces apoptosis in HL-60 promyelocytic leukemia cells but not in HL-60 PET mutant, Leukemia 7: 1846–1851.

    PubMed  CAS  Google Scholar 

  • Machwate, M., Rodan, S.B., Rodan, G.A. and Harada, S.-L, 1998, Sphingosine kinase mediates cyclic AMP suppression of apoptosis in rat periosteal cells, Mol. Pharmacol. 54: 70–77.

    PubMed  CAS  Google Scholar 

  • MacLennan, A.J., Browe, C.S., Gaskin, A.A., Lado, D.C. and Shaw, G., 1994, Cloning and characterization of a putative G-protein coupled receptor potentially involved in development. Mol. Cell. Neurosci. 5: 201–209.

    Article  PubMed  CAS  Google Scholar 

  • Makamura, H., Oda, T., Hamada, K., Hirano, T., Shimizu, N., Utiyama, H., 1998, Survival by Mac-1-mediated adherence and anoikis in phorbol ester-treated HL-60 cells, J. Biol. Chem. 273: 15234–15351.

    Google Scholar 

  • Mandala, S.M., 2001, Sphingosine 1-phosphate phosphatases, Prostaglandins Lipid Mediators 64: 143–156.

    CAS  Google Scholar 

  • Mandala, S.M., Thornton, R., Galve-Roperh, I., Poulton, S., Peterson, C., Olivera, A., Bergstrom, J., Kurtz, M.B. and Spiegel, S., 2000, Molecular cloning and characterization of a novel lipid phosphohydrolase that degrades sphingosine 1-phosphate and induces cell death, Proc. Nat. Acad. Sci. U.S.A. 97: 7859–7864.

    CAS  Google Scholar 

  • Mao, C., Xu, R., Szulc, Z.M., Bielawska, A., Galadari, S.H. and Obeid, L.M., 2001, Cloning and characterization of a novel human alkaline ceramidase: a mammalian enzyme that hydrolyzes phytoceramide, J. Biol. Chem. (in press).

    Google Scholar 

  • Marshall, C.J., 1995, Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation, Cell 80: 179–185.

    Article  PubMed  CAS  Google Scholar 

  • Matecki, A, and Pawelczyk, T., 1997, Regulation of phospholipase C deltal by sphingosine, Biochim. Biophys. Acta 1325: 287–296.

    PubMed  CAS  Google Scholar 

  • Melendez, A., Floto, R.A., Gillooly, D.J., Harriett, M.M and Allen, J.M., 1998, FcγRI coupling to phospholipase D initiates sphingosine kinase-mediated calcium mobilization and vesicular trafficking, J. Biol. Chem. 273: 9393–9402.

    Article  PubMed  CAS  Google Scholar 

  • Meyer zu Heringdorf, D.M., Lass, H., Alemany, R., Laser, K.T., Neumann, E., Zhang, C., Schmidt, M., Rauen, U., Jakobs, K.H. and Van Koppen, C.J., 1998, Sphingosine kinase-mediated Ca2+ signaling by G-protein-coupled receptors, EMBO J. 17: 2830–2837.

    PubMed  CAS  Google Scholar 

  • Meyer zu Heringdorf, D.M., Lass, H., Kuchar, I., Alemany, R., Guo, Y., Schmidt, M. and Jakobs, K.H., 1999, Role of sphingosine kinase in Ca2+ signaling by epidermal growth factor receptor, FEBS Lett. 461: 217–222.

    Article  PubMed  CAS  Google Scholar 

  • Moore, A.N., Kampfl, A.W., Zhao, X., Hayes, R.L. and Dash, P.K., 1999, Sphingosine 1-phosphate induces apoptosis of cultured hippocampal neuronsthat requires protein phosphatases and activator protein-1 complexes, Neurosci. 94: 405–415.

    Article  CAS  Google Scholar 

  • Mullmann, T.J., Siegel, M.I., Egan, R.W. and Billah, M.M., 1991, Sphingosine inhibits phosphatidate phosphohydrolase in human neutrophils by a protein kinase C-independent mechanism, J. Biol. Chem. 266: 2013–2016.

    PubMed  CAS  Google Scholar 

  • Nakamura, H., Oda, T., Hamada, K.., Hirano, T., Shimizu, N. and Utiyama, H., 1998, Survival by Mac-1-mediated adherence and anoikis in phorbol ester-treated HL-60 cells, J. Biol. Chem. 273: 15345–15351.

    PubMed  CAS  Google Scholar 

  • Nava, V.E., Lacana, E., Poulton, S., Liu, H., Sugiura, M., Kono, K., Milstien, S., Kohama, T. and Spiegel, S., 2000, Functional characterization of human sphingosine kinase-1, FEBS Lett. 473: 81–84.

    Article  PubMed  CAS  Google Scholar 

  • Nikolova-Karakashian, M, Morgan, E.T., Alexander, C., Liotta, D.C. and Merrill Jr., A.H., 1997, Bimodal regulation of ceramidase by interleukin-1beta. Implications for the regulation of cytochrome P450 2C11 (CYP2C11), J. Biol. Chem. 272: 18718–18724.

    Article  PubMed  CAS  Google Scholar 

  • Ohta, H., Sweeney, E.A., Masamune, A., Yatomi, Y., Hakomori, S-I. and Igarashi, Y., 1995, Induction of apoptosis by sphingosine in human leukemic HL-60 cells; a possible endogenous modulator of apoptotic DNA fragmentation occurring during phorbol esterinduced differentiation, Cancer Res. 55: 691–697.

    PubMed  CAS  Google Scholar 

  • Ohta, H., Yatomi, Y., Sweeney, E.A., Hakomori, S-I. and Igarashi, Y., 1994, A possible role of sphingosine in induction of apoptosis by rumor necrosis factor-alpha in human neutrophils, FEBS Lett. 355: 267–270.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto, H., Takuwa, N., Gonda, K., Okazaki, H., Chang, K.., Yatomi, Y., Shigematsu, H. and Takuwa, Y., 1998, EDG1 is a functional sphingosine-1-phosphate receptor that is linked via a G(i/o) to multiple signaling pathways, including phospholipase C activation, Ca2+ mobilization, ras-mitogen-activated protein kinase activation and adenylate cyclase inhibition. J. Biol. Chem. 273: 27104–27110.

    PubMed  CAS  Google Scholar 

  • Okazaki, H., Ishizaka, N., Sakurai, T., Kurokawa, K.., Goto, K., Kumada, M. and Takuwa, Y., 1993, Molecular cloning of a novel putative G protein-coupled receptor expressed in the cardiovascular system, Biochem. Biophys. Res. Comm. 190: 1104–1109.

    Article  PubMed  CAS  Google Scholar 

  • Olivera, A. and Spiegel, S., 1993, Sphingosine 1-phosphate as a second messenger in cell proliferation induced by PDGF and FCS mitogens, Nature (London) 365: 557–560.

    Article  CAS  Google Scholar 

  • Olivera, A., Edsall, L., Poulton, S., Kazlauskas, A. and Spiegel, S., 1999, Platelet-derived growth factor-induced activation of sphingosine kinase requires phosphorylation of the PDGF receptor tyrosine residue responsible for binding of PLGγ FASEB J. 13: 1593–1600.

    PubMed  CAS  Google Scholar 

  • Olivera, A., Kohama, T., Edsall, L., Nava, V., Cuvillier, O., Poulton, S. and Spiegel, S., 1999, Sphingosine kinase expression increases intracellular sphingosine 1-phosphate and promotes cell growth and survival, J. Cell Biol. 147: 545–557.

    Article  PubMed  CAS  Google Scholar 

  • Orlati, S., Hrelia, S. and Rugolo, M., 1997, Pertussis toxin-and PMA-insensitive calcium mobilization by sphingosine in CFPAC-1 cells: Evidence for a phosphatidic acid-dependent mechanism, Biochim. Biophys. Acta 1358: 93–102.

    PubMed  CAS  Google Scholar 

  • Park, Y.S., Hakomori, S-L, Kawa, S., Ruan, F. & Igarashi Y., 1994, Liposomal N,N,N-trimethylsphingosine (TMS) as an inhibitor of B16 melanomacell growth and metastasis with reduced toxicity and enhanced drug efficacy compared to free TMS: Cell membrane signaling as a target in cancer therapy III, Cancer Res. 54: 2213–2217.

    PubMed  CAS  Google Scholar 

  • Pitson, S., Moretti, P.A.B., Zebol, J.R., Xia, P., Gamble, J.R., Vadas, M.A., D’Andrea, R.J. and Wattenberg, B.W., 2000, expression of a catalylically inactive sphingosine kinase mutant blocks agonis-induced sphingosine kinase activation. A dominant negative sphingosine kinase, J. Biol. Chem. 275: 33945–33950.

    Article  PubMed  CAS  Google Scholar 

  • Postma, F.R., Jalink, K., Hengeveld, T. and Moolenaar, W.H., 1996, Sphingosine 1-phosphate rapidly induces Rho-dependent neurite retraction: action through a specific cell surface receptor. EMBO J. 15: 2388–2392.

    PubMed  CAS  Google Scholar 

  • Pushkareva, M., Chao, R., Bielawska, A., Merrill Jr, A.H., Crane, H.M., Lagu, B., Liotta, D. and Hannun, Y.A., 1995, Stereoselectivity of induction of the retinoblastoma gene product (pRb) dephosphorylation by D-erythro-sphingosine supports a role for pRb in growth suppression by sphingosine, Biochem. 34: 1885–1892.

    CAS  Google Scholar 

  • Pyne, S. and Pyne, NJ., 1996, The differential regulation of cyclic AMP by sphingomyelin-derived lipids and the modulation of sphingolipid-stimulated extracellular signal regulated kinase-2 in airway smooth muscle. Biochem. J. 315: 917–923.

    PubMed  CAS  Google Scholar 

  • Pyne, S. and Pyne, N.J., 2000, Sphingosine 1-phosphate signaling in mammalian cells, Biochem. J. 349: 385–402.

    Article  PubMed  CAS  Google Scholar 

  • Pyne, S., Chapman, J., Steele, L. and Pyne, N.J., 1996, Sphingomyelin-derived lipids differentially regulate the extracellular signal-regulated kinase 2 (ERK-2) and c-Jun N-terminal kinase (JNK) signal cascades in airway smooth muscle, Eur. J. Biochem. 237: 819–826.

    Article  PubMed  CAS  Google Scholar 

  • Rakhit, S., Conway, A-M., Tate, R., Bower, T., Pyne, N.J. and Pyne, S., 1999, Sphingosine 1-phosphate stimulation of the p42/p44 mitogen-activated protein kinase pathway in airway smooth muscle: role of endothelial differentiation gene-1, c-Src tyrosine kinase and phosphoinositide 3-kinase. Biochem. J. 338: 643–649.

    Article  PubMed  CAS  Google Scholar 

  • Sakakura, C., Sweeney, E.A., Shirahama, T., Hakomori, S-I. and Igarashi, Y., 1996, Suppression of Bcl-2 gene expression by sphingosine in the apoptosis of human leukemic HL-60 cells during phorbol ester-induced terminal differentiation, FEBS Lett. 379: 177–180.

    Article  PubMed  CAS  Google Scholar 

  • Sakakura, C., Sweeney, E.A., Shirahama, T., Ruan, F., Solca, F., Kohno, M., Hakomori, S-I., Fischer, E.H. & Igarashi, Y., 1997, Inhibition of MAP kinase by sphingosine and its methylated derivative, N,N-dimethylsphingosine: A correlation with induction of apoptosis in solid tumor cells, Intl. J. Oncol. 11: 31–39.

    CAS  Google Scholar 

  • Sakane, F., Yamada, K. and Kanoh H., 1989, Different effects of sphingosine, R59022 and anionic amphiphiles on two diacylglycerol kinase isozymes purified from porcine thymus cytosol, FEBS Lett. 255: 409–413.

    Article  PubMed  CAS  Google Scholar 

  • Sato, K, Tomura, H., Igarashi, Y., Ui, M. and Okajima, F., 1999, Possible involvement of cell surface receptors in sphingosine 1-phosphate-induced activation of extracellular signal-regulated kinase in C6 glioma cells. Mol. Pharmacol. 55: 126–133.

    PubMed  CAS  Google Scholar 

  • Strasser, A., O’Connor, L. and Dixit, V.M., 2000, Apoptosis signaling, Ann. Rev. Biochem. 69: 217–245.

    PubMed  CAS  Google Scholar 

  • Sweeney, E.A., Sakakura, C., Shirahama, T., Masamune, A., Ohta, H., Hakomori, S-I. and Igarashi, Y., 1996, Sphingosine and its methylated derivative N,N-dimethylsphingosine (DMS) induce apoptosis in a variety of human cancer cell lines, Int. J. Cancer 66: 358–366.

    Article  PubMed  CAS  Google Scholar 

  • Tani, M., Okino, N., Mori, K., Tanigawa, T., Izu, H. and Ito, M., 2000, Molecular cloning of the full-length cDNA encoding mouse neutral ceramidase. A novel but highly conserved gene family of neutral/alkaline ceramidases, J. Biol. Chem. 275: 11229–11234.

    PubMed  CAS  Google Scholar 

  • Tolan, D., Conway, A-M., Pyne, N.J. and Pyne, S., 1997, Sphingosine prevents diacylglycerol signaling to mitogen-activated protein kinase in airway smooth muscle. Am. J. Physiol. 273 (Cell. Physiol 42): C928–C936.

    PubMed  CAS  Google Scholar 

  • Tolan, D., Conway, A-M., Rakhit, S., Pyne, N.J. and Pyne, S., 1999, Assessment of the extracellular and intracellular actions of sphingosine 1-phosphate by using the p42/p44 mitogen-activated protein kinase cascade as a model. Cell. Signal. 11: 349–354.

    Article  PubMed  CAS  Google Scholar 

  • Van Brocklyn, J.R., Lee, M-J., Menzeleev, R., Olivera, A., Edsall, L., Cuvillier, O., Thomas, D.M., Coopman, P.J.P., Thangada, S., Liu, C.H., Hla, T. and Spiegel, S., 1998, Dual actions of sphingosine 1-phosphate: extracellular through the G(i)-coupled receptor EDG1 and intracellular to regulate proliferation and survival, J. Cell Biol. 142: 229–240.

    PubMed  Google Scholar 

  • Van Brocklyn, J.R., Tu, Z., Edsall, L., Schmidt, R.R. and Spiegel, S., 1999, Sphingosine 1-phosphate-induced cell rounding and neurite retraction are mediated by the G protein-coupled receptor H218, J. Biol. Chem. 274: 4626–4632.

    PubMed  Google Scholar 

  • Van Veldhoven, P.P. and Mannaerts, G.P., 1993, Sphingosine-phosphate lyase, Adv. Lipid Res. 26: 69–98.

    PubMed  Google Scholar 

  • Van Veldhoven, P.P. and Mannaerts, G.P., 1994, Sphinanine 1-phosphate metabolism in cultured skin fibroblasts: evidence for the existence of a sphingosine phosphatase, Biochem. J. 299: 597–601.

    PubMed  Google Scholar 

  • Verheij, M., Bose, R., Lin, X.H., Yao, B., Jarvis, W.D., Grant, S., Birrer, M.J., Szabo, E., Zon, L.I., Kyriakis, J.M., Haimovitz-Friedman, A., Fuks, Z. and Kolesnick, R.N., 1996, Requirement for ceramide-initiated SAPK/JNK. signaling in stress-induced apoptosis, Nature 380: 75–79.

    Article  PubMed  CAS  Google Scholar 

  • Wang, F., Nobes, C.D., Hall, A. and Spiegel, S., 1997, Sphingosine 1-phosphate stimulates Rho-mediated tyrosine phosphorylation of focal adhesion kinase and paxillin in Swiss 3T3 fibroblasts. Biochem. J. 324: 481–488.

    PubMed  CAS  Google Scholar 

  • Windh, R.T., Lee, M-J., Hla, T., An, S., Barr, A.J. and Manning, D.R., 1999, Differential coupling of the sphingosine 1-phosphate receptors EDGl, EDG3 and H218/EDG5 to the Gi, Gq, and G12 families of heterotrimeric G proteins. J. Biol. Chem. 274: 27351–27358.

    Article  PubMed  CAS  Google Scholar 

  • Xia, P., Wang, L., Gamble, J.R. and Vadas, M.A., 1999, Activation of sphingosine kinase by tumor necrosis factor-a inhibits apoptosis in human endothelial cells, J. Biol. Chem. 274: 34499–34505.

    PubMed  CAS  Google Scholar 

  • Xu, J., Love, L.M., Singh, I., Zhang, Q-X., Dewald, J., Wang, D-A., Fischer, D.J., Tigyi, G., Berthiaume, L.G., Waggoner, D.W. and Brindley, D.N., 2000, Lipid phosphate phosphatase-1 and Ca2+ control lysophosphatidate signaling through EDG-2 receptors, J. Biol. Chem. 275: 27520–27530.

    PubMed  CAS  Google Scholar 

  • Yamazaki, Y., Kon, J., Sato, K., Tomura, H., Sato, M., Yoneya, T., Okazaki, H., Okajima, F. and Ohta, H., 2000, EDG-6 as a putative sphingosine 1-phosphate receptor coupling to Ca2+ signaling pathway. Biochem. Biophys. Res. Comm. 268: 583–589.

    Article  PubMed  CAS  Google Scholar 

  • Yang, L., Yatomi, Y., Hisano, N., Qi, R., Asazuma, N., Satoh, K.., Igarashi, Y., Ozaki, Y. and Kume, S., 1996, Activation of protein-tyrosine kinase Syk in human platelets stimulated with lysophosphatidic acid or sphingosine 1-phosphate. Biochem. Biophys. Res. Comm. 229: 440–444.

    Article  PubMed  CAS  Google Scholar 

  • Yang, L., Yatomi, Y., Miura, Y., Satoh, K. and Ozaki, Y., 1999, Metabolism and functional effects of sphingolipids in blood cells, Br. J. Hemeatol. 107: 282–293.

    CAS  Google Scholar 

  • Yatomi, Y., Ruan, F,, Megidish, T., Toyokumi, T., Hakomori, S. and Igarashi, Y., 1996, N,N-dimethylsphingosine inhibition of sphingosine kinase and sphingosine 1-phosphate activity in human platelets, Biochem. J. 35: 626–633.

    CAS  Google Scholar 

  • Young, K.W., Bootman, M.D., Channing, D.R., Lipp, P., Maycox, P.R., Meakin, J., Challis, J.A. and Nahorski, S.R., 2000, Lysophosphatidic acid-induced Ca2+ mobilisation requires intracellular sphingosine 1-phospahte production, J. Biol. Chem. 275: 38532–38539.

    PubMed  CAS  Google Scholar 

  • Zhang, H., Desai, N.N., Olivera, A., Seki, T., Brooker, G. and Spiegel, S., 1991, Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation. J. Cell Biol. 114: 155–167.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, H., Li, X-M., Meinkoth, J. and Pittman, R.N., 2000, Akt regulates cell survival and apoptosis at a postmitochondrial level, J. Cell Biol. 151: 483–494.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, J. and Saba, J., 1998, Identification of the first mammalian sphingosine phosphate lyase gene and its functional expression in yeast, Biochim. Biophys. Res. Comm. 242: 502–507.

    Article  CAS  Google Scholar 

  • Zondag, G.C., Postma, F.R., Van Etten, A., Verlaan, I. and Moolenaar, W.H., 1998, Sphingosine 1-phosphate signaling through the G-protein-coupled receptor Edg-1. Biochem. J. 330: 605–609.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Pyne, S. (2004). Cellular Signaling by Sphingosine and Sphingosine 1-Phosphate. In: Quinn, P.J., Kagan, V.E. (eds) Phospholipid Metabolism in Apoptosis. Subcellular Biochemistry, vol 36. Springer, Boston, MA. https://doi.org/10.1007/0-306-47931-1_13

Download citation

  • DOI: https://doi.org/10.1007/0-306-47931-1_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46782-0

  • Online ISBN: 978-0-306-47931-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics