Skip to main content

Symbiotic Nitrogen Fixation Between Microorganisms and Higher Plants of Natural Ecosystems

  • Chapter
Microorganisms in Plant Conservation and Biodiversity
  • 523 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahern CP, Staff IA (1994) Symbiosis in cycads: The origin and development of coralloid roots in Macrozamia communis (Cycadaceae). American Journal of Botany 81, 1559–1570.

    Google Scholar 

  • Akimov VN, Dobritsa SV, Stupar OS (1990) Grouping of Frankia strains by DNA homology: How many genospecics are in the genus Frankia? In ‘Abstracts of the V th international symposium on nitrogen fixation with non-legumes.’ (Florence, Italy)

    Google Scholar 

  • Allen MJ (1992) ‘Mycorrhizal functioning. An integrated plant-fungal process.’ (Chapman Hall: New York, London)

    Google Scholar 

  • Allen ON, Allen EK (1981) The Leguminosae. A source book of characteristics, uses and nodulation.’(The University of Wisconsin Press: Madison)

    Google Scholar 

  • Aziz, T, Sylvia DM (1993) Utilisation of vesicular-arbuscular mycorrhizal fungi in the establishment of nitrogen-fixing trees. In ‘Symbioses in nitrogen-fixing trees.’ (Eds NS Subba Rao and C Rodriques-Barrueco) pp. 167–194. (International Science Publisher: New York)

    Google Scholar 

  • Becking JH (1977) Dinitrogen-fixing associations in higher plants other than legumes. In ‘A treatise on dinitrogen fixation. Section II. Biology.’ (Eds RWF Hardy and WS Silver) pp. 763. (Wiley: New York)

    Google Scholar 

  • Benson DR, Silvester WB (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiological Review 57, 293–319.

    CAS  Google Scholar 

  • Bergman B, Matyeyev A, Rasmussen U (1996) Chemical signalling in cyanobacterial-plant symbioses. Trends in Plant Science 1. 191–197.

    Article  Google Scholar 

  • Bergman B, Rai AN, Johansson C, Soderback E (1992) Cyanobacterial-plant symbioses. Symbiosis 14, 61–81.

    Google Scholar 

  • Berry AM (1994) Recent developments in the actinorhizal symbioses. In ‘Symbiotic nitrogen fixation.’ (Eds PH Graham, MJ Sadowsky and CP Vance) pp. 118–215. (Kluwer Academic Publishers: Dordrecht)

    Google Scholar 

  • Bloom RA, Mullin BC, Tate RL (1989) DNA restriction patterns and DNA-DNA solution hybridization studies of Frankia isolates from Myrica pennsylvanica (bayberry). Applied and Environmental Microbiology 55, 2155–2160.

    PubMed  CAS  Google Scholar 

  • Bond G (1963) The root nodules of non-leguminous Angiosperms. In ‘Symbiotic associations.’ (Eds PS Nutman and B Moss) pp. 72–91. (Cambridge University Press: Cambridge)

    Google Scholar 

  • Bond G (1967) Fixation of nitrogen by higher plants other than legumes. Annual Review of Plant Physiology 18, 107–126.

    Article  CAS  Google Scholar 

  • Bond G (1974) Root nodule symbioses with actinomycete-like organisms. In ‘The biology of nitrogen fixation.’ A Quispel (ed.) pp. 342–378. (Elsevicr/North Holland Publications: Amsterdam)

    Google Scholar 

  • Brundrett MC, Abbott LK (2002) Arbuscular mycorrhizas in plant communities. In ‘Microorganisms in plant conservation and biodiversity.’ (Eds K Sivasithamparam, KW Dixon and RL Barrett) pp. 151–193. (Kluwer Academic Publishers: Dordrecht)

    Google Scholar 

  • Bryan JA, Berlyn, GP, Gordon JC (1996) Toward a new concept of the evolution of symbiotic nitrogen fixation in the Leguminosae. Plant and Soil 186, 151–159.

    Article  CAS  Google Scholar 

  • Burdon JJ, Gibson AH, Searle SD, Woods MJ, Brockwell J (1999) Variation in the effectiveness of symbiotic associations between native rhizobia and temperate Australian Acacia: within-species interactions. Journal of Applied Ecology 36, 398–408.

    Article  Google Scholar 

  • Callahan D, DelTredici P, Torrey JG (1978) Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia. Science 199, 899–902.

    Google Scholar 

  • Clawson ML, Caru M, Benson DR (1998) Diversity of Frankia strains in root nodules of plants from the families Elaeagnaceae and Rhamnaceae. Applied Environmental Microbiology 64, 3539–3543.

    CAS  Google Scholar 

  • Corby HDL (1981) The systematic value of leguminous root nodules. In ‘Advances in legume systematics. Part 2.’ (Eds RM Polhill and PH Raven) pp. 657–669. (Royal Botanic Gardens Kew: Kew)

    Google Scholar 

  • Costa J-L, Paulsrud P, Rikkinen J, Lindblad P (2001) Genetic diversity of Nostoc symbionts endophytically associated with two bryophyte species. Applied and Environmental Microbiology 67, 4393–4396.

    Article  PubMed  CAS  Google Scholar 

  • Crews TE (1993) Phosphorus regulation of nitrogen fixation in a traditional Mexican agroecosystem. Biogeochemistry 21, 141–166.

    Article  CAS  Google Scholar 

  • Crews TE (1999) The presence of nitrogen fixing legumes in terrestrial communities: Evolutionary vs. ecological considerations. Biogeochemistry 46, 233–246.

    CAS  Google Scholar 

  • Crisp MD, Doyle J (1995) (eds) ‘Advances in legume systematics. Part 5. Phylogeny.’ (Royal Botanic Gardens Kew: Kew)

    Google Scholar 

  • Dawson JO (1990) Interaction among actinorhizal and associated plant species. In ‘The biology of Frankia and actmorhizalplants.’ (Eds CR Schwintzer and JD Tjepkema) pp. 299–316. (Academic Press: San Diego)

    Google Scholar 

  • Dinkelaker B, Hengeler C, Maischner H (1995) Distribution and function of proteoid roots and other root clusters. Botanica Acta 108, 183–200.

    Google Scholar 

  • Dobereiner J (1984) Nodula¢o e fixa¢ao de nitrogenie em leguminosas florestais. Pesq. Agrop. Brasilia 19, 83–90.

    Google Scholar 

  • Doyle JJ (1998) Phylogenetic perspectives on nodulation: evolving views of plants and symbiotic bacteria. Trends in Plant Science 3, 473–478.

    Article  Google Scholar 

  • Doyle JJ, Doyle JL, Ballenger JA, Dickson EE, Kajita T, Ohashi H (1997) A phylogeny of the chloroplast gene rbcL in the Leguminosae: Taxonomic correlations and insights into the evolution of nodulation. American Journal of Botany 84, 541–554.

    CAS  Google Scholar 

  • Duhoux E, Prin Y, Dommergues YR (1993) Comparison of aerial nodulation of Casuarina sp. with legume stem nodulation. In ‘Symbioses in nitrogen-fixing trees.’ (Eds NS Subba Rao and C Rodriques-Barrueco) pp. 85–94. (International Science Publisher: New York)

    Google Scholar 

  • Duhoux E, Rinaudo G. Diem HG. Auguy F, Fernandez D, Bogusz D, Franche C, Dommergues Y (2001) Angiosperm Gymnostoma trees produce root nodules colonized by arbuscular mycorrhizal fungi related to Glomus. New Phytologist 149, 115–125.

    Article  Google Scholar 

  • Egerton-Warburton LM, Allen EB, Allen MF (2002) Conservation of mycorrhizal fungal communities under elevated atmospheric CO 2 and anthropogenic nitrogen deposition. In ‘Microorganisms in plant conservation and biodiversity.’ (Eds K Sivasithamparam, KW Dixon and RL Barrett) pp. 19–43. (Kluwer Academic Publishers: Dordrecht)

    Google Scholar 

  • Erskine PD, Stewart GR, Schmidt S, Turnbull MH, Unkovich MJ, Pate JS (1996) Water availability-a physiological constraint on nitrate utilization in plants of Australian semi-arid mulga woodlands. Plant Cell and Environment 19, 1149–1159.

    CAS  Google Scholar 

  • Faria SM, Lewis GP, Sprent JI, Sutherland JM (1989) Occurrence of nodulation in the Leguminosae. New Phytologist 111, 607–619.

    Google Scholar 

  • Fowler D. Flechard C, Skiba U, Coyle M, Cape JN (1998) The atmospheric burden of oxidized nitrogen and its role in ozone formation and deposition. New Phytologist 139, 11–23.

    Article  CAS  Google Scholar 

  • Franco AA, Campello EFC, Dias LE, de Faria SM (1997) The use of nodulated and mycorrhizal legume trees for land reclamation in mining sites. In ‘Biological nitrogen fixation for the 21 st century.’ (Eds C Elmerich, A Kondorosi and WE Newton) pp. 623–624. (Kluwer Academic Publishers. Dordrecht)

    Google Scholar 

  • Fred EB, Baldwin IL, McCoy E (1932) ‘Root nodule bacteria and leguminous plants.’ (Madison: Wisconsin, USA)

    Google Scholar 

  • Galiana A, Chaumont J, Diem H G, Dommergues YR (1990) Nitrogen-fixing potential of Acacia mangium and Acacia auriculiformis seedlings inoculated with Bradyrhizobium and Rhizobium spp. Biology and Fertility of Soils 9, 261–267.

    Article  Google Scholar 

  • Galloway JN, Sehlesinger WH, Levy H, Michaels A, Schnoor JL (1995) Anthropogenic enhancement — environmental response. Global Biogeochemical Cycles 9, 235–252.

    Article  CAS  Google Scholar 

  • Giddy C (1974) ‘Cycads of South Africa.’ (Purnell: Johannesburg, London)

    Google Scholar 

  • Grobbelaar N (1993) The cycad-cyanobacterium symbiosis. In ‘Symbioses in nitrogen-fixing trees.’ (Eds NS Subba Rao and C Rodriques-Barrueco) pp. 95–140. (International Science Publisher: New York)

    Google Scholar 

  • Grobbelaar N, Meyer JJM, Burchmore J (1988) Coning and sex ratio of Encephalartos transvenosus at the Modjadji Nature Reserve. South African Journal of Botany 55, 79–82.

    Google Scholar 

  • Grove TS, O’Connell AM. Malajezuk N (1980) Effects of fire on the growth, nutrient content and rate of nitrogen fixation of the cycad Macrozamia riedlei. Australian Journal of Botany 28, 271–281.

    Article  CAS  Google Scholar 

  • Halliday J, Pate JS (1976) Symbiotic nitrogen fixation by coralloid roots of the cycad Macrozamia riedlei: physiological characteristics and ecological significance. Australian Journal of Plant Physiology 3, 349–358.

    Article  CAS  Google Scholar 

  • Hansen AP, Pate JS (1987a) Comparative growth and symbiotic performance of seedlings of Acacia spp. in defined pot culture or as natural understorey components of a eucalypt forest ecosystem in S.W. Australia. Journal of Experimental Botany 38, 13–25.

    CAS  Google Scholar 

  • Hansen AP, Pale JS (1987b) Evaluation of the 15 N natural abundance method and xylem sap analysis for assessing N, fixation of understorey legumes in jarrah (Eucalyptus marginata Donn ex Sm.) forest in S.W. Australia. Journal of Experimental Botany 38, 1446–1458.

    CAS  Google Scholar 

  • Hansen AP, Pate JS, Atkins CA (1987a) Relationships between acetylene reduction activity, hydrogen evolution and nitrogen fixation in nodules of Acacia spp.: experimental background to assaying fixation by acetylene reduction under field conditions. Journal of Experimental Botany 38, 1–12.

    CAS  Google Scholar 

  • Hansen AP, Pate JS, Hansen A, Bell DT (1987b) Nitrogen economy of post fire stands of shrub legumes in jarrah (Eucalyptus marginata Donn ex Sm) forest of SW Australia. Journal of Experimental Botany 38, 26–41.

    CAS  Google Scholar 

  • Haukka K, Lindstrom K, Young JPW (1998) Three phylogenetic group of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Applied Environmental Microbiology 64, 419–426.

    CAS  Google Scholar 

  • Herendeen PS, Ditcher DL (eds) (1992) ‘Advances in legume systematics. Part 4. The fossil record.’ (Royal Botanic Gardens Kew: Kew)

    Google Scholar 

  • Herrera MA, Salamananca P, Barea JM (1993) Mycorrhizal associations and their functions in nodulating nitrogen-fixing trees. In ‘Symbioses in nitrogen-fixing trees.’ (Eds NS Subba Rao and C Rodriques-Barrueco) pp. 141–165. (International Science Publisher: New York)

    Google Scholar 

  • Hill KD (1998a) Cycadophyta. In ‘Flora of Australia. Volume 48. Ferns, gymnosperms and allied groups.’ (Ed. PM McCarthy) pp. 597–661. (ABRS/CSIRO Australia: Collingwood)

    Google Scholar 

  • Hill RS (1998b) The fossil record of cycads in Australia. In ‘Flora of Australia. Volume 48. Ferns, gymnosperms and allied groups.’ (Ed. PM McCarthy) pp. 539–544. (ABRS/CSIRO Australia: Collingwood)

    Google Scholar 

  • Hingston FJ, Malajczuk NA, Grove TS (1982) Acetylene reduction (N 2 -fixation) by Jarrah forest legumes following fire and phosphate application. Journal of Applied Ecology 19, 631–646.

    Google Scholar 

  • Israel JW (1987) Investigation of the role of phosphorus in symbiotic dinitrogen fixation. Plant Physiology 84, 835–840.

    CAS  PubMed  Google Scholar 

  • Jenkinson DS (1990) An introduction to the global nitrogen cycle. Soil Use Magazine 6, 56–61.

    Google Scholar 

  • Jenkinson DS (2001) The impact of humans on the nitrogen cycle, with focus on temperate arable agriculture. Plant and Soil 228, 3–15.

    Article  CAS  Google Scholar 

  • Jones DL (1993) ‘Cycads of the world, Ancient plants in today’s landscape.’ (William Heinemann Australia: Chatswood)

    Google Scholar 

  • Jordan CD (1984) The Rhizobiaceae. In ‘Bergey’s manual of systematic bacteriology.’ 9th edn. Volume 1. (Eds JG Holt and NR Kreig). pp. 24–43. (Williams and Wilkins: London)

    Google Scholar 

  • Kohls SJ, Thimmapuram J, Buschena A, Pashke MW, Dawson JO (1994) Nodulation patterns of actinorhizal plants in the family Rosaceae. Plant and Soil 162, 229–239.

    Article  Google Scholar 

  • Lafay B, Burdon JJ (1998) Molecular diversity of rhizobia occurring on native shrubby legumes in southeastern Australia. Applied and Environmental Microbiology 64, 3989–3997.

    PubMed  CAS  Google Scholar 

  • Laguerre G, van Berkum P, Amarger N, Pr’evost D (1997) Genetic diversity of rhizobial symbionis isolated from legume species within the genera Astragalus, Oxytropis, and Onobrychis. Applied and Environmental Microbiology 63, 4748–4758.

    PubMed  CAS  Google Scholar 

  • Lamont BB (1982) Mechanisms for enhancing nutrient uptake in plants with particular reference to mediterranean South Africa and Western Australia. Botanical Review 48, 597–689.

    CAS  Google Scholar 

  • Lamont BB (1993) Why are hairy root clusters so abundant in the most nutrient-impoverished soils of Australia? Plant and Soil 155/156, 269–272.

    Article  Google Scholar 

  • Lamont BB, Ryan RA (1977) Formation of coralloid roots by Cycas under sterile conditions. Phytomorphology 27, 426–429.

    Google Scholar 

  • Langkamp PJ, Dalling MJ (1982) Nutrient cycling in a stand of Acacia holosericea A. Cunn. ex Don. 11. Phosphorus and endomycorrhizal associations. Australian Journal of Botany 30, 107–119.

    CAS  Google Scholar 

  • Lawrie AE (1981) Nitrogen fixation by native Australian legumes. Australian Journal of Botany 29, 143–157.

    Article  CAS  Google Scholar 

  • Layzell DB, Weagle GE, Canvin DT (1984) A highly sensitive flow-through H 2 gas analyzer for use in nitrogen fixation studies. Plant Physiology 75, 582–585.

    CAS  PubMed  Google Scholar 

  • Lee HM (1978) Studies of the family Proteaceae. II. Further observations on the root morphology of some Australian genera. Proceedings of the Royal Society of Victoria 90, 251–256.

    Google Scholar 

  • Lieberman MT, Mallory LM, Simkins S, Alexander M (1985) Numerical taxonomic analysis of cross-inoculation patterns of legumes and Rhizobium. Plant and Soil 84, 225–244.

    Article  Google Scholar 

  • Lindblad P, Atkins CA, Pate JS(1991) N 2 -fixation by freshly isolated Nostoc from coralloid roots of the cycad Macrozamia riedlei (Fisch. ex Gaud.) Gardn. Plant Physiology 95, 753–759.

    Article  CAS  PubMed  Google Scholar 

  • Mabberley DJ (1997) ‘The plant book. A portable dictionary of the vascular plants.’ 2nd edn. (Cambridge University Press: Cambridge)

    Google Scholar 

  • Mansfield TA, Goulding KWT, Sheppard LJ (1998) ‘Disturbance of the nitrogen cycle.’ (Cambridge University Press: Cambridge)

    Google Scholar 

  • Marshall J, Huang TC, Grobbelaar N (1989) Comparative morphological and physiological studies on cyanobionts of Encephalartos transvenosus. South African Journal of Botany 55, 574–580.

    Google Scholar 

  • Maunder M, Culham A, Bordeu A, Allanguillame J, Wilkinson M, (1999) Genetic diversity and pedigree for Sophora toromiro (Leguminosae): a tree extinct in the wild. Molecular Ecology 8, 725–738.

    Article  Google Scholar 

  • McLuckie J (1922) Studies in symbiosis. II. The apogeotropic roots of Macrozamia spiralis and their physiological significance. Proceedings of the Linnean Society of New South Wales 47, 319–328.

    Google Scholar 

  • McLuckie J (1923) Contribution to the morphology and physiology of the root nodules of Podocarpus spinulosa and P. elata. Proceedings of the Linnean Society of New South Wales 48, 82–93.

    Google Scholar 

  • Miller IM, Baker DD (1986) Nodulation of actinorhizal plants by Frankia strains capable of both root hair infection and intercellular penetration. Protoplasma 131, 82–91.

    Article  Google Scholar 

  • Monk D, Pate JS, Loneragan WA (1981) Biology of Acacia pulchella R.Br. with a special reference to symbiotic nitrogen fixation. Australian Journal of Botany 29, 570–592.

    Article  Google Scholar 

  • Morrison TM, English DA (1967) The significance of mycorrhizal nodules of Agathis australis. New Phytologist 66, 245–250.

    Google Scholar 

  • Nathanielsz CP, Staff IA (1975a) On the occurrence of intracellular blue-green algae in cortical cells of the apogeotropic roots of Macrozamia communis L. Johnson. Annals of Botany 39, 363–368.

    Google Scholar 

  • Nathanielsz CP, Staff IA (1975b) A mode of entry of blue-green algae into the apogeotropic roots of Macrozamia communis. American Journal of Botany 62, 232–235.

    Google Scholar 

  • Newman EI (1995) Phosphorus inputs to terrestrial ecosystems. Journal of Ecology 83, 713–726.

    Google Scholar 

  • Normand P, Bousquet J (1989) Phylogeny of nitrogenase sequences in Frankia and other nitrogen-fixing microorganisms. Journal of Molecular Evolution 29, 436–447.

    PubMed  CAS  Google Scholar 

  • Norstog NK (1987) Cycads and the origin of insect pollination. American Scientist 75, 270–279.

    Google Scholar 

  • Norstog NK, Fawcett PKS (1989) Insect-Cycad symbiosis and its relation to the pollination of Zamia furfuracea (Zamiaceae) by Rhopalotria mollis (Curculionidae). American Journal of Botany 76, 1380–1394.

    Google Scholar 

  • Odee DW, Sprent Jl (1992) Acacia brevispica: a non-nodulated mimosoid legume? Soil Biology and Biochemistry 24, 717–719.

    Article  Google Scholar 

  • Ornduff, R (1985) Male-biased sex ratios in the cycad Macrozamia riedlei (Zamiaceae). Bulletin of the Torrey Botanical Club 112,393–397.

    Google Scholar 

  • Padmanabhan S, Hirtz R-D, Broughton WJ (1990) Rhizobia in tropical legumes: cultural characteristics of Bradyrhizobium and Rhizobium sp. Soil Biology and Biochemistry 22, 23–28.

    Article  Google Scholar 

  • Parker MA (2001) Mutualism as a constraint on invasion success for legumes and rhizobia. Diversity and Distributions 7, 125–136.

    Article  Google Scholar 

  • Pate JS (1977) Nodulation and nitrogen metabolism. In ‘The physiology of the garden pea.’ (Eds JF Sutcliffe and JS Pale) pp. 469–489. (Academic Press: London)

    Google Scholar 

  • Pate JS (1986) Xylem-to-phloem transfer — vital component of the nitrogen-partitioning system of a nodulated legume. In ‘Phloem transport.’ (Eds J Cronshaw, WJ Lucas and RT Giaquinta) pp. 445–462. (A.R. LissInc.: New York)

    Google Scholar 

  • Pate JS (1993) Biology of the S.W. Australian cycad Macrozamia riedlei (Fisch. ex Gaud.) C.A.Gardn. In ‘Cycad 90, second international conference on the biology of cycads.’ (Ed. K Norstog) pp. 33–45. (New York Botanic Gardens: New York)

    Google Scholar 

  • Pate JS (1999) Partitioning of carbon and nitrogen in a legume. In ‘Plants in action.’ (Eds B Atwell, P Kriedmann and C Turnbull) pp. 161–164. (MacMillan Education Australia: Melbourne)

    Google Scholar 

  • Pate JS, Atkins CA (1983) Nitrogen uptake, transport and utilization. In ‘Nitrogen fixation. Volume 3: Legumes.’ (Ed. WJ Broughton) pp. 245–298. (Oxford University Press: Oxford)

    Google Scholar 

  • Pate JS, Layzell DB (1990) Energetics and biological costs of nitrogen assimilation. In ‘The biochemistry of plants.’ (Eds PK Stumpf and EE Conn) pp. 1–42. (Academic Press, Inc.: California)

    Google Scholar 

  • Pate JS, Lindblad P, Atkins CA (1988) Pathway of assimilation and transfer of fixed nitrogen in coralloid roots of cycad-Nostoc symbioses. Planta 176, 461–471.

    Article  CAS  Google Scholar 

  • Pate JS, Unkovich MJ (1998) Measuring symbiotic nitrogen fixation: case studies of natural and agricultural ecosystems in a Western Australian setting. In ‘Physiological plant ecology.’ (Eds MC Press, JD Scholes and MG Baker) pp. 153–173. (Blackwell Science Ltd: Oxford)

    Google Scholar 

  • Pate JS, Unkovich MJ, Erskine, PD, Stewart GR (1998) Australian mulga ecosystems-13C and 15N natural abundance of biota components and their ecophysiological significance. Plant, Cell and Environment 21, 1231–1242.

    Article  CAS  Google Scholar 

  • Pate JS, Verboom WH, Gallagher PD (2001) Co-occurrence of Proteaceae, laterite and related oligotrophic soils: coincidental associations or causative inter-relationships? Australian Journal of Botany 49, 529–560.

    Article  CAS  Google Scholar 

  • Pate JS, Watt M (2001) Roots of Banksia spp. (Proteaceae) with special reference to functioning of their specialised proteoid root clusters. In ‘Roots: the hidden half.’ (3rd edition) (Eds Y Waisel, A Eshel and U Kafkafi) (Marcel Dekker Inc.: New York)

    Google Scholar 

  • Paulsrud P, Rikkinen J, Lindblad P (1998) Cyanobiont specificity in some Nostoc-containing lichens and in a Peltigera aphthosa photosymbiodeme. New Phytologist 139, 517–524.

    Article  CAS  Google Scholar 

  • Paulsrud P, Rikkinen J, Lindblad P (2000) Spatial patterns of photobiont diversity in some Nostoc-containing lichens. New Phytologist 146, 291–299.

    Article  Google Scholar 

  • Peoples MB, Palmer B, Boddey RM (2001) The use of 15 N to study biological nitrogen fixation by perennial legumes. In ‘Stable isotope techniques in the study of biological processes and functioning of ecosystems.’ (Eds MJ Unkovich, JS Pate, AM McNeill and J Gibbs)pp. 119–144. (Kluwer Academic Publishers: Dordrecht)

    Google Scholar 

  • Polhill RM, Raven PH (eds) (1981) ‘Advances in legume systematics, Part 1.’ (Royal Botanic Gardens, Kew: Kew)

    Google Scholar 

  • Purnell HM (1960) Studies of the family Proteaceae. I. Anatomy and morphology of the roots of some Victorian species. Australian Journal of Botany 8, 38–50.

    Article  Google Scholar 

  • Quispel A, Rodriques-Barrucco, C and Subba Rao, NS (1993) Some general considerations on symbioses of nitrogen-fixing trees. In ‘Symbioses in nitrogen-fixing trees.’ (Eds NS Subba Rao and C Rodriques-Barrueco) pp. 1–32. (International Science Publisher: New York)

    Google Scholar 

  • Racette S, Torrey JG (1989) Root nodule initiation in Gymnostoma (Casuarinaceae) and Shepherdia (Elaeagnaceae) induced by Frankia strain HFPGpI1. Canadian Journal of Botany 67, 2873–2879.

    Google Scholar 

  • Raich JW, Russell AE, Crews TE, Farrington H, Vitousek PM (1996) Both nitrogen and phosphorus limit plant production on young Hawaiian lava flows. Biogeochemistry 32, 1–14.

    Article  Google Scholar 

  • Reddell P (1993) Soil constraints to the growth of nitrogen-fixing trees in tropical environments. In ‘Symbioses in nitrogen-fixing trees.’ (Eds NS Subba Rao and C Rodriques-Barrueco) pp. 65–83. (International Science Publisher: New York)

    Google Scholar 

  • Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmanek M (2000) Plant invasions — the role of mutualisms. Biological Reviews 75, 65–93.

    PubMed  CAS  Google Scholar 

  • Robson AD (1983) Mineral nutrition. In ‘Nitrogen fixation. Volume 3: Legumes.’ (Ed. WJ Broughton) pp. 36–55. (Clarendon Press: Oxford)

    Google Scholar 

  • Rodriguez-Barrueco C, Cervantes E, Subba Rao NS (1993) Host specificity in Frankia symbiosis. In ‘Symbioses in nitrogen-fixing trees.’ (Eds NS Subba Rao and C Rodriques-Barrueco) pp. 195–210. (International SciencePublisher: New York)

    Google Scholar 

  • Roughley RJ (1987) Acacias and their root-nodule bacteria. In ‘Australian Acacias in developing countries.’ (Ed. JW Turnbull) ACIAR Proceedings no. 16. pp. 45–49. (ACIAR: Canberra)

    Google Scholar 

  • Schlesinger WH, Hartley AE (1992) A global budget for atmospheric NH 3 . Biogeochemistry 15,191–211.

    Article  CAS  Google Scholar 

  • Schwintzer CR, Tjepkema JD (1990) ‘The biology of Frankia and actinorhizal plants.’ (Academic Press: San Diego)

    Google Scholar 

  • Skene KR (1998) Cluster roots: some ecological considerations. Journal of Ecology 86, 1060–1064.

    Article  Google Scholar 

  • Smith SE and Read DJ (1997) ‘Mycorrhizal symbiosis.’ 2nd edn. (Academic Press: San Diego)

    Google Scholar 

  • Soltis DE, Soltis PS, Morgan DR. Swensen SM, Mullin BC, Dowd JM, Martin PG (1995) Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proceedings of the National Academy of Science, United States of America 92, 2647–2651.

    CAS  Google Scholar 

  • Spratt ER (1919) A comparative account of the root nodules of the Leguminosae. Annals of Botany 33, 189–200.

    Google Scholar 

  • Sprent JI (1981) Functional evolution in some papilionoid root nodules. In ‘Advances in legume systematics. Part 2.’ (Eds RM Polhill and PH Raven) pp. 671–676. (Royal Botanic Gardens Kew: Kew)

    Google Scholar 

  • Sprent JI (1994) Evolution and diversity in the legume-rhizobium symbiosis: Chaos theory. In ‘Symbiotic nitrogen fixation.’ (Eds PH Graham, MJ Sadowsky and CP Vance) (Kluwer Academic Publishers: Dordrecht)

    Google Scholar 

  • Sprent JI (1999) Nitrogen fixation and growth of non-crop legume species in diverse environments. Perspectives in Plant Ecology, Evolution and Systematics 2, 149–162.

    Article  Google Scholar 

  • Sprent JI (2000) Nodulation as a taxonomic tool. In ‘Advances in legume systematics. Part 9.’ (Eds PS Herendeen and A Bruneau) pp. 21–44. (Royal Botanic Gardens, Kew: Kew)

    Google Scholar 

  • Sprent JI (2001) ‘Nodulation in legumes.’ (Royal Botanic Gardens, Kew: Kew)

    Google Scholar 

  • Sprent JI (2002) Knobs, knots and nodules — the renaissance in legume symbiosis research. New Phytologist 153, 2–6.

    Article  Google Scholar 

  • Sprent JI, Raven JA (1992) Evolution of nitrogen fixing symbioses. In ‘Biological nitrogen fixation.’ (Eds G Stacey, RH Burris and HJ Evans) (Chapman and Hall: New York)

    Google Scholar 

  • Sprent JI, Sutherland JM, de Faria SM (1989) Structure and function of root nodules from woody legumes. In ‘Advances in legume biology.’ (Eds CH Stirton and JL Zarucchi) Monographs of the Systematic Botany Society of the Missouri Botanic Gardens 29, 559–578.

    Google Scholar 

  • Stevenson DW (1992) A formal classification of the extant cycads. Brittonia 44, 220–223.

    Google Scholar 

  • Stevenson FJ, Cole MA (1999) ‘Cycles of soil.’ (Wiley: New York)

    Google Scholar 

  • Subba Rao NS (1993) Interaction of nodulated tree species with other microorganisms and plants. In ‘Symbioses in nitrogen-fixing trees.’ (Eds NS Subba Rao and C Rodriques-Barrueco) pp. 233–258. (International SciencePublisher: New York)

    Google Scholar 

  • Sutherland JM, Sprent, JI (1993) Nitrogen fixation by legume trees. In ‘Symbioses in nitrogen-fixing trees.’ (Eds NS Subha Rao and C Rodriques-Barrueco) pp. 33–63. (International Science Publisher: New York)

    Google Scholar 

  • Swensen SM (1996) The evolution of actinorhizal symbioses: evidence for multiple origins of the symbiotic association. American Journal of Botany 83, 1503–1521.

    Google Scholar 

  • Swensen SM, Mullin BC (1997) The impact of molecular systematics on hypotheses for the evolution of root nodule symbioses and implications for expanding symbioses to new host plant genera. Plant and Soil 194, 185–192.

    Article  CAS  Google Scholar 

  • Tang W (1987) Heat and odour production in cycad cones. Fairchild Tropical Garden Bulletin July: 12–14.

    Google Scholar 

  • Tang W (1989) Seed dispersal in the cycad Zamia pumila in Florida. Canadian Journal of Botany 67, 2066–2070.

    Google Scholar 

  • Tennakoon KU, Pate JS, Arthur D (1997) Ecophysiological aspects of the woody root hemiparasite Santalum acuminatum (R. Br.) A. DC. And its common hosts in south western Australia. Annals of Botany 80, 245–256.

    Google Scholar 

  • Thrall PH, Burdon JJ, Woods MJ (2000) Variation in the effectiveness of symbiotic associations between native rhizobia and temperate Australian legumes: interactions within and between genera. Journal of Applied Ecology 37, 52–65.

    Article  Google Scholar 

  • Torrey JG (1978) Nitrogen fixation by actinomycete-nodulated angiosperms. Bioscience 28, 589–592.

    Google Scholar 

  • Trinick MJ (1979) Structure and functioning of nitrogen fixing root nodules formed on Parasponia andersonii Planch. Canadian Journal of Microbiology 25, 565–578.

    Article  PubMed  CAS  Google Scholar 

  • Trinick MJ (1980) Effects of oxygen, temperature and other factors on the reduction of acetylene by root nodules formed by Rhizobium on Parasponia andersonii Planch. New Phytologist 86, 27–38.

    CAS  Google Scholar 

  • Trinick MJ (1982) Biology. In ‘Nitrogen fixation. Volume 2.’ (Ed. WJ Broughton) pp. 76–146. (Clarendon Press: Oxford)

    Google Scholar 

  • Trinick MJ, Hadobas PA (1988) Biology of the Paraspoma-Bradyrhizobium symbiosis. Plant and Soil 110, 177–185.

    Article  Google Scholar 

  • Unkovich MJ, Pate JS, Lefroy EC, Arthur DJ (2000) Nitrogen isotope function in the fodder tree legume tagasaste (Chamaecytisusproliferus) and assessment of N 2 fixation inputs in deep sandy soils of Western Australia. Australian Journal of Plant Physiology 27, 921–929.

    Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13, 87–115.

    Article  Google Scholar 

  • Walker BA, Pate JS, Kuo J (1983) Nitrogen fixation by nodulated roots of Viminaria juncea (Schrad. & Wendl.) Hoffmans (Fabaceae) when submerged in water. Australian Journal of Plant Physiology 10, 409–421.

    CAS  Google Scholar 

  • Webb DT, Nevarez M, de Jesus S (1984) Further in vitro studies of light-induced root nodulation in the Cycadales. Environmental and Experimental Botany 24, 37–44.

    Article  Google Scholar 

  • Wheeler CT, Miller IM (1990) Current and potential uses of actinorhizal plants in Europe. In ‘The biology of Frankia and actinorhizal plants.’ (Eds CR Schwintzer and JD Tjepkema) pp. 365–389. (Academic Press: San Diego)

    Google Scholar 

  • Young JM (2001) Implications of alternative classifications and horizontal gene transfer for bacterial taxonomy. International Journal of Systematic and Evolutionary Microbiology 51, 945–953.

    PubMed  CAS  Google Scholar 

  • Young JM, Kuykendall LD, Martinez-Romero E, Kerr A, Sawada H (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. International Journal of Systematic and Evolutionary Microbiology 51, 89–103.

    PubMed  CAS  Google Scholar 

  • Young JPW (1991) Classification of nitrogen fixing organisms. In ‘Biological nitrogen fixation.’ (Eds G Stacey, RH Burns and HJ Evans) (Chapman and Hall: New York)

    Google Scholar 

  • Young JPW (1996) Phylogeny and taxonomy of rhizobia. Plant and Soil 186, 45–52.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Pate, J.S. (2002). Symbiotic Nitrogen Fixation Between Microorganisms and Higher Plants of Natural Ecosystems. In: Sivasithamparama, K., Dixon, K.W., Barrett, R.L. (eds) Microorganisms in Plant Conservation and Biodiversity. Springer, Dordrecht. https://doi.org/10.1007/0-306-48099-9_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-48099-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0780-4

  • Online ISBN: 978-0-306-48099-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics